本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合