在日益提高的环境意识的时代,有效的废物管理的重要性不能被夸大。纸板在造成废物产生的许多材料中脱颖而出。有了适当的纸板收集和回收实践,人们可以产生重大的改变,并带领前往更可持续的未来。在这方面,本文试图通过循环经济方法配置综合的绿色非线性运输系统,以减轻瓦楞纸废物对社会,经济和环境场所的负面影响。这种非线性运输系统旨在优化目标,包括整体运输支出,碳足迹和旅行时间。通过不结合循环经济的影响,从提出的模型中进一步开发了一个子模型。在这里,设计了不确定性时间顺序的Fermatean双相犹豫模糊集理论,及其全维方面。建议通过采用两种方法,加权总和方法和全球标准方法来解决建议的运输系统。此外,还进行了案例研究,以详细说明设计的可持续管理瓦楞纸模型的相关性。结果表明,当三个目标被视为z 1 = 6、178、094时,全局标准方法会产生更好的结果。42,z 2 = 61,080。248,z 3 = 21,067,183。1。结果表明,将循环经济整合到供应链模型中会带来可持续性,并减少与之相关的生态和人类危害。最后,有一个灵敏度分析,管理洞察力以及局限性和未来计划的结论。
硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
增材制造 (AM) 通过提供快速制造能力,彻底改变了液体火箭发动机的部件设计。这为推进行业的开发和飞行计划带来了重大机遇,从而节省了成本和时间,并通过新设计和合金开发提高了性能。一个值得注意的例子是 GRX-810 氧化物弥散强化 (ODS) 合金,它是专门为极端温度而开发的。这种镍钴铬基合金是使用集成计算材料工程 (ICME) 技术创建的,旨在专注于具有出色温度和抗氧化性能的新型材料。GRX-810 合金利用 AM 工艺将纳米级氧化钇颗粒融入其整个微观结构中,从而实现了显着的增强。与传统的镍基高温合金相比,GRX-810 合金的抗拉强度提高了两倍,蠕变性能提高了 1,000 倍,抗氧化性能提高了两倍。 NASA 成功展示了使用 GRX-810 合金通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 工艺开发和制造部件。我们付出了大量努力来建模、评估冶金性能、开发热处理工艺、表征微观结构和确定机械性能。GRX-810 合金专为航空航天应用而设计,包括液体火箭发动机喷射器、预燃器、涡轮机和热段部件,可承受高达 1,100°C 的温度。开发这种合金的目的是缩小传统镍基高温合金和耐火合金之间的温度差距。本文对 GRX-810 合金与其他航空航天合金进行了全面的比较,讨论了其微观结构、机械性能、加工进步、部件开发和热火测试结果。此次研发的最终目标是提升 GRX-810 合金的技术就绪水平 (TRL),使其能够融入 NASA 和商业航空航天应用。
图1所示的垂直NPN设备制造的标准过程始于P类型基板。基板在将制造NPN设备设备的区域中植入N型掺杂剂(例如砷)。该植入物被称为埋藏层,因为下一步是N型硅的外延生长。掩埋层的板电阻远低于外延层的电阻。AR分离扩散是用诸如硼的P Tyne掺杂剂进行的。这会产生由P型隔离所包围的N型材料的电隔离岛。是这些N型区域,它们是侧向NPN设备的收集器。直接在这些区域的下方将是先前讨论的埋藏层。掩埋层通过为电流流动创造低电阻路径来降低收集器电阻。这是产生所需的电气设备特性所需的。进入N型岛群体被扩散为P型硼基。当将N型掺杂剂(如磷)扩散到碱基中时,发射极会形成。垂直NPN结构现在很明显。
摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
本文由内布拉斯加大学林肯分校 DigitalCommons 电气与计算机工程系免费提供给您,供您免费访问。它已被内布拉斯加大学林肯分校 DigitalCommons 授权管理员接受并纳入电气与计算机工程系:学位论文、毕业论文和学生研究。
* Keith B. Hall 是路易斯安那州矿产法研究所所长,也是路易斯安那州立大学的法学教授。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊上的《最新发展:矿产法》。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业 16 年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客《石油和天然气法简报》。在从事法律工作期间,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
路易斯安那州立大学。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊的“最新发展:矿产法”。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业十六年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客“石油和天然气法律简报”。在从事法律工作的同时,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。