地球的极地区域处于环境和气候变化的最前沿。一个明显的例子是由于1979年至2021年的极地扩增,北极夏季冰的加速损失[1]。下降的海冰导致空前的海洋生态系统变化[2],对食物网和生物多样性产生了复杂的生态后果。从亚北方太平洋和北大西洋水域进入北极海洋的温暖和新鲜的海洋对流正在支持北部的北方物种,这一过程称为北极化[3]。为了为未来的气候条件做准备,资源和政策经理需要有关可能发生的变化的信息。与地质和冰核记录相结合的气候历史记录,物理,生物学和化学档案(图1)为海洋,大气和生物系统如何响应过去的气候变化,为海洋,大气和生物系统提供了证据。我们重点介绍了四个关键的研究主题,在这些研究主题中,古气候数据可以改善我们对过去,现在和未来环境变化的驱动因素。
摘要 - 解码算法允许以增加面积的成本实现极高的吞吐量。查找表(LUTS)可用于替换其他作为电路实现的功能。在这项工作中,我们显示了通过在独立的解码器中精心制作的LUTS代替逻辑块的影响。我们表明,使用LUTS改善关键性能指标(例如,区域,吞吐量,潜伏期)可能比预期更具挑战性。我们提出了三种基于LUT的解码器的变体,并详细描述了它们的内部工作以及电路。基于LUT的解码器与常规展开的解码器进行了比较,该解码器采用固定点表示数字,具有可比的误差校正性能。简短的系统极性代码被用作说明。所有由此产生的展开解码器均显示能够在28 nm FD-SOI技术中以1.4 GHz至1.5 GHz的时钟进行少于10 Gbps的信息吞吐量。与常规展开的解码器相比,我们的基于LUT的解码器的最佳变体可将面积的需求降低23%,同时保留可比的错误校正性能。
源对碳(C)分配是由水槽强度驱动的,即水槽器官进口C的能力,在组织生长和生物量生产率中起着核心作用。但是,在树木中尚未彻底表征水槽强度的分子驱动因素。生长素作为主要的植物植物激素,可调节源组织中光剂量的动员,并提高碳水化合物向水槽器官(包括根)的易位。在这项研究中,我们使用了“生长素刺激的碳汇”方法来了解杨树中长距离源 - 键C分配中涉及的分子过程。杨树碎屑被叶面喷涂,上面喷涂了极地生长素传输调节剂,包括生长素增强剂(AE)(即IBA和IAA)和生长素抑制剂(AI)(即NPA),然后全面使用生物量评估,均经材料来对叶片,茎和根组织进行全面的分析,均质和均质概况,均经均经材料,c isotope and coptope and coptope and coptoper nertem nertops和coptoper nertops nekotom and et necotom nerting nekoling,et negoling noursem。生长素调节剂改变了根部干重和分支模式,AE增加了光合固定的C从叶片到根组织。转录组分析在AE条件下确定了根组织中高度表达的基因,其中包括编码多半乳糖醛酸酶和β-淀粉酶的转录本,这些转录物可能会增加水槽的大小和活性。代谢分析表明,总代谢的变化,包括甲醇的相对丰度含量改变,在AE和AI条件下,根组织中柠檬酸盐水平的相反趋势。总而言之,我们假设一个模型表明,流动糖醇,淀粉代谢衍生的糖和TCA-Cycle中间体可以作为杨树中的源– sink C关系,作为水槽强度的关键分子驱动因素。
由于俄罗斯对乌克兰发动侵略战争,西方普遍同意必须对俄罗斯进行威慑,以阻止其进一步发动侵略行为。这场战争导致西方与俄罗斯在包括北极在内的许多方面的外交合作中断。然而,北极政策专家仍在认真讨论继续与俄罗斯进行有限的国际合作的相关性。这主要是因为需要全球重要的气候和环境变化相关数据和研究,而如果没有俄罗斯的参与,这些数据和研究将很难进行。这种合作参与的立场源于传统的“北极例外论”观念——这一思想源于冷战时期,尽管世界其他地区存在冲突,但北极地区被描绘成西方与俄罗斯之间独特的“和平区”和“对话领土”。在政治上,西方许多参与者将北极合作视为缓解与俄罗斯紧张关系的途径,甚至将其视为在侵略战争结束后开始重建外交关系的潜在共同点。在文化上,合作实践、根深蒂固的研究范式、信仰体系和意识形态信念以及广泛共享和无可争议的谈论该地区的方式存在长期的路径依赖,这为许多北极参与者产生了一种“认知偏见”。如果一个人重复“高诺
摘要 本文提出了一种用于航天应用的抗辐射极性设计 14T (RHPD-14T) SRAM 单元。通过估算 65 纳米互补金属氧化物半导体 (CMOS) 技术的各种设计指标,分析了所提出的 RHPD-14T 单元的性能。基于结合抗辐射极性设计技术与合理的布局拓扑,所提出的 RHPD-14T 可以耐受所有单节点翻转和部分双节点翻转。仿真结果表明,RHPD-14T 的写入访问时间比 RSP-14T/QUCCE-10T/DICE/S4P8N/We-Quatro(@VDD=1.2V) 短 1.83 倍 / 1.59 倍 / 1.56 倍 / 1.12 倍 / 1.05 倍。 RHPD-14T的字线写触发电压比QUCCE-10T/DICE/We-Quatro/S4P8N/RSP-14T (@VDD=1.2V)高2.67×/2.22×/1.35×/1.29×/1.26×;RHPD-14T的保持静态噪声容限比DICE/S4P8N/RHPD-12T (@VDD=1.2 V)高14.85×/7.15×/1.05×。此外,蒙特卡洛(MC)模拟证明RHPD-14T波动性小、稳定性强、恢复能力稳定、抗单效应翻转(SEU)能力强。关键词:保持静态噪声容限、极性设计抗辐射、单效应翻转分类:集成电路
GSA 为政府和美国人民提供房地产、采购和技术服务方面的最佳客户体验和价值。我们为联邦政府提供集中采购,提供价值数十亿美元的产品、服务和设施,这些是联邦机构为公众服务所需的。我们通过建造、管理和维护政府建筑以及租赁商业空间来提供工作场所。我们的采购解决方案为政府组织和军队提供私营部门的专业服务、设备、用品、电信和信息技术。我们的技术领导地位帮助机构以支持其更好地服务公众的使命的方式构建、购买和共享技术。我们实施的政府范围的政策促进了管理最佳实践和高效的政府运作。
全球。诺斯罗普·格鲁曼公司负责 JPSS-2、JPSS-3 和 JPSS-4 航天器的设计、生产和集成、完整的卫星环境测试以及对发射/早期在轨检查的支持。航天器设计源自诺斯罗普·格鲁曼公司经过验证的 LEOStar-3™ 总线,该总线用于 NASA 的 Landsat-8、Landsat-9 和 ICESat-2 地球科学卫星以及商业成像和防御任务。
阿拉斯加国家石油储备 (NPR-A) 的管理受《海军石油储备生产法》(NPRPA) 管辖,该法影响土地的管理方式和授权的使用类型。例如,NPRPA 不允许土地管理局 (BLM) 指定关键环境问题区域 (ACEC) 或允许在 NPR-A 内进行硬岩开采。NPRPA 要求内政部长在 NPR-A 内进行石油和天然气租赁和开发,并在与石油和天然气勘探和开发相一致的范围内保护重要的生存资源、娱乐、鱼类和野生动物、历史价值和/或风景价值。其他不干扰石油和天然气租赁和开发且未明确豁免的用途也可以考虑。
现代太空任务越来越多地穿越地月空间,需要扩展空间感知功能。传统的空间域感知 (SDA) 系统最初并非为探测和跟踪地月物体而建造的,这可能需要购置新的传感器系统。每个系统都有许多参数,包括传感类型、高度和平台数量,这些参数可能有所不同。任何“极点位置”的一个关键优势是它的位置远在黄道平面之外,并且提供独特的、在某些情况下是正交的观察几何形状,而这种几何形状迄今为止尚未开发用于操作部署。本文讨论了极点位置轨迹的物理原理、燃料与高度的交换以及技术更新,所有这些都表明在短期内展示极点位置 SDA 能力是可行的。此外,本文设计了一个拟议的原型,使用小型航天器与地面传感器协同工作,并描述了当前可供部署的技术。