PSLV 是印度第三代运载火箭,也是第一款配备液体级的运载火箭。PSLV 是印度空间研究组织的主力运载火箭,能够将卫星发射到不同类型的轨道,如太阳同步极地轨道 (SSPO)、低地球轨道 (LEO) 和地球同步转移轨道 (GTO),甚至深空任务。PSLV 已完成 48 次任务,将卫星送入不同轨道,其中包括印度的遥感和通信卫星、首次月球任务 Chandrayaan-1、火星轨道器任务 (MOM) 航天器、首次太阳任务 Aditya-L1、XPoSat、印度区域导航卫星星座 (NavIC),以及许多外国卫星。另一个值得注意的特点是 2017 年 2 月 15 日发射的 PSLV-C37,成功将 104 颗卫星部署在太阳同步轨道上。 PSLV 展示了 PS2 发动机重启、在同一任务中将卫星送入多个轨道等关键技术,以及使用废弃 PS4 级(称为 POEM)进行微重力实验的印度独特廉价太空平台。地球同步卫星运载火箭 (GSLV)
简介印度太空研究组织(ISRO)自成立以来一直处于太空技术和勘探的最前沿。通过使用其关键资源,该组织多年来在太空技术方面取得了重大进展,将印度定位为全球太空领域的主要参与者。ISRO的53年旅程已经取得了惊人的发展,从Thumba的开始到目前作为全球参与者的地位。 空间运输,基础设施,科学,应用,人类勘探,机器人,人工智能和量子技术都是这样的例子。 ISRO目睹了太空技术和技术创新的进步。 太空运输系统●在1970年代,基于固体刺激的火箭的发展能够将30公斤有效载荷放在120公里的高度上,这标志着太空运输系统的开始。 ●随后创建了第一代发射车,即卫星发射车(SLV)和使用液体螺旋技术的增强SLV(ASLV)。 ●固体和液体推进的整合以及各种至关重要的技术的发展,导致了极地卫星发射车(PSLV)的发展,并有能力将1700 kg有效载荷放入极地轨道中。 ●低温推进发动机的土著发展是第三代火箭的建设中的重要技术飞跃,即GSLV发射车辆能够在地理同步转移轨道(GTO)中提供2000 kg有效载荷。ISRO的53年旅程已经取得了惊人的发展,从Thumba的开始到目前作为全球参与者的地位。空间运输,基础设施,科学,应用,人类勘探,机器人,人工智能和量子技术都是这样的例子。ISRO目睹了太空技术和技术创新的进步。太空运输系统●在1970年代,基于固体刺激的火箭的发展能够将30公斤有效载荷放在120公里的高度上,这标志着太空运输系统的开始。●随后创建了第一代发射车,即卫星发射车(SLV)和使用液体螺旋技术的增强SLV(ASLV)。●固体和液体推进的整合以及各种至关重要的技术的发展,导致了极地卫星发射车(PSLV)的发展,并有能力将1700 kg有效载荷放入极地轨道中。●低温推进发动机的土著发展是第三代火箭的建设中的重要技术飞跃,即GSLV发射车辆能够在地理同步转移轨道(GTO)中提供2000 kg有效载荷。●开发更先进的发射车,即发射车辆MK3(LVM3),才能发射高通量通信卫星。●LVM3的有效载荷能力为4000公斤,由世界第三大固体助推器,高容量液体和低温发动机提供动力。●ISRO最近引入了小型卫星发射车(SSLV)。这是一款旨在快速周转的三阶段发射车,能够将500千克卫星发射到500公里的平面轨道上。
土星的卫星土卫二因卡西尼号太空飞船在其南极地区发现了被称为“虎纹”的明显线性结构,该结构喷出气体和冰粒羽流而备受关注。据信,这颗小型卫星(直径 504 公里)有一个多孔岩石核心和一个冰壳,中间被全球地下咸水海洋隔开。潮汐加热可能有助于推动卫星内部的化学反应,这使得它成为一个非常有希望的候选者,那里可能存在适合生命形成的条件。这使得土卫二成为未来任务的主要目标。由于土星引起的强烈引力扰动、土卫二的较高引力矩以及土星其他卫星的额外扰动,土卫二周围人造卫星的动态环境极其复杂。因此,寻找自然稳定轨道绝非易事。极地轨道对于进一步研究虎纹地区和绘制全球地下海洋图非常有用。
气候变化、通信和军事行动都依赖于它。越来越多的国家参与太空任务,而许多其他国家则依赖太空提供的服务。私营部门为太空探索提供的资金带来了新的能力和可能更广泛共享的利益;这些利益正在改变技术的方向及其周围的规范。然而,需要制定严格的法律来确保太空的持续可行性和安全性。太空技术在今天几乎是不可或缺的,尽管上个世纪可以说是太空探索的“黄金时代”,因为在 1957 年至 1975 年期间科学技术取得了巨大进步。1 我们每天都在使用它们,它们是不可或缺的。不同的卫星用于各种目的,例如天气预报、电视广播、导航或电信。我们在任何特定时间需要时都会得到它们的帮助。地球周围的各种轨道上有许多卫星。人类文明仅限于近地轨道、国际空间站的站点和高分辨率卫星图像。中地球轨道对于全球定位系统 (GPS) 至关重要,因此我们可以在手机上导航或跟踪大型商用飞机。在天气跟踪和电信协助方面,可以使用地球静止轨道、极地轨道和太阳同步轨道。2
由 OHB Sweden 牵头的财团已开始为可能的北极气象卫星 (AWS) 星座任务实施一颗原型卫星。这个低极轨道上的小型卫星星座将频繁覆盖极地地区,以支持改进北极和南极地区的临近预报和数值天气预报 (NWP)。AWS 任务旨在补充现有的极地轨道气象卫星(例如 MetOp 和 MetOp 第二代 (SG)),提供额外的大气探测信息以改进全球范围内的 NWP。这颗重 120 公斤的 AWS 原型卫星将在约 600 公里的太阳同步轨道上飞行,并基于 OHB Sweden 的 InnoSat 平台。有效载荷是 Omnisys Instruments 的交叉轨道扫描被动微波辐射计,具有 4 个频段,可提供大气探测信息,补充 MetOp-SG 上的微波辐射计。全球数据将存储在卫星上,用于特定区域的数据转储以及实时全球广播。地面部分包含泰雷兹公司高度创新的数字波束形成网络 (DBFN) 地面站,可同时跟踪多颗卫星。预计最终的卫星群将为整个北极地区提供延迟时间少于 30 分钟的数据。
航天器总质量 最多 200kg 任务数据上行链路 28kbps;下行链路 50kbps(低速率)/480kbps(高速率) 指向知识 0.07 度(1 σ) 指向控制 0.08 度(1 σ) 转动速率 0.5 度/秒(横滚/偏航);1.5 度/秒(俯仰) GPS 精度位置 10m;速度 0.02m/s;时间 50ns(1 σ) 设计寿命 >7 年(500km 轨道);>5 年(1,200km 轨道) 运载火箭 阿丽亚娜空间联盟号、阿丽亚娜 6 号、维珍轨道发射器一号,其他拟议 标称轨道 500-1,500km 圆形极地轨道;可适应高度/倾斜度电池锂离子总线电压22-38V非调节C&DH冗余总线@125kbps(SoCan)和1Mbps(SpaceWire)加密AES 256有效载荷电气和数据处理接口电源线(0.5-5A);热传感器线;SoCan总线;SpaceWire总线1同步(1kHz)线路;1 PPS(1Hz)线路TT&C上行/下行链路频段10Ka遥测频率/8Ka命令频率推进电力(氙气HET)最大Delta-V> 800m / s可靠性(非有效载荷)0.96 @ 5年宽带TT&C /通信选项可选Ka波段任务数据链路(1.6Gbps)带2个可操纵天线(15kg / 40W要求) div>
摘要:本研究的目标是定义一个通过无线电力传输为月球表面提供电力的月球轨道系统。为了满足月球基地的电力需求,需要使用放置在稳定轨道上的卫星群。该卫星群的每颗卫星都由太阳能电池阵列和电池组成,为电力传输系统供电。该系统由激光器组成,可将电力传输到月球表面的接收器。接收器是光子能量转换器,是针对激光单色光优化的光伏电池。这项工作的成果将通过研究不同的轨道涵盖系统的架构,特别是分析一些子系统,例如激光器、电池组和放置在月球地面上的接收器。这项研究考虑了两种不同的能源需求,因此考虑了两种不同的接收器位置:首先,在阿尔特弥斯任务着陆点的战略位置,即月球南极附近的沙克尔顿陨石坑;其次,在月球赤道上,为未来和新的探索做准备。目标是评估满足月球基地所需功率的可能配置,估计约为 100 kW。为此,分析了几种情况:三种不同的轨道,一种是极地轨道,一种是冰冻轨道,一种是赤道轨道(地球-月球远距离逆行轨道),卫星数量不同,接收器的传输锥角也不同。本文的主要目的是对上述系统进行全面的可行性研究,特别强调选定的子系统。虽然简要介绍和讨论了热控制、激光瞄准和姿态控制子系统,但还需要进一步研究以深入研究这些领域,并更全面地了解它们在系统中的实施和性能。
摘要:社区全球观测系统模拟实验(OSSE)包(CGOP)由美国国家海洋和大气管理局(NOAA)和联合卫星数据同化中心(JCSDA)开发,它提供了一种工具,可以定量评估新兴环境观测系统或新兴现场或遥感仪器对 NOAA 数值天气预报(NWP)预报技能的影响。OSSE 的典型第一步是模拟来自所谓自然运行的观测。因此,需要观测的空间、时间和视图几何来从自然运行中提取大气和表面变量,然后将其输入到观测前向算子(例如辐射传输模型)中以模拟新的观测。对于尚未建造仪器或尚未部署平台的新提出的系统来说,这是一个挑战。为满足这一需求,本研究引入了一个轨道模拟器,根据特定的托管平台和机载仪器特性计算这些参数,该模拟器由美国国家海洋和大气管理局卫星应用与研究中心 (STAR) 最近开发并添加到 GCOP 框架中。除了模拟现有的极地轨道和地球静止轨道之外,它还适用于新兴的近空间平台(例如平流层气球)、立方体卫星星座和苔原轨道。观测几何模拟器不仅包括被动微波和红外探测器,还包括全球导航卫星系统/无线电掩星 (GNSS/RO) 仪器。对于被动大气探测器,它计算不同平台上拟议仪器的几何参数,例如随时间变化的位置(纬度和经度)、扫描几何(卫星天顶角和方位角)和交叉轨道或圆锥扫描机制的地面瞬时视场 (GIFOV) 参数。对于 RO 观测,它确定卫星或平流层气球上的发射器和接收器的几何形状并计算它们的倾斜路径。该模拟器已成功应用于最近的 OSSE 研究(例如,评估未来地球静止高光谱红外探测器和平流层气球 RO 观测的影响)。
灵活月球探索架构 (FLARE) 的概念是将四名机组人员送上月球表面,在月球表面停留至少七天,然后安全返回地球。只要组件车辆投入运行,FLARE 就可以实施。FLARE 是作为 NASA 载人着陆系统 (HLS) 参考架构的替代方案而开发的,该架构来自 2019 年创建的设计分析周期 (DAC) #2。DAC2 指南要求在近直线晕轨道 (NRHO) 中使用 Gateway 车辆。相反,FLARE 选择低月球冻结极地轨道 (LLFPO) 进行组件的月球会合,并选择 Gateway 车辆。LLFPO 提供每 2 小时飞越南极一次的稳定轨道,确保可以轻松进入月球表面进行表面中止,并且推进剂需求比 NRHO 低得多。最小 FLARE 概念使用一次太空发射系统 (SLS) 发射、一个猎户座火箭、一个欧洲服务舱 (ESM) 和一个载人着陆器(通过商用飞行器发射)。FLARE 增加了 SpaceTug,它以成熟成功的 ULA“通用”半人马座上面级运载火箭为基础,经过修改后可打造出地月转移飞行器。在 FLARE 基线任务中,SpaceTug 提供将猎户座 + ESM 从 LLFPO 返回地球所需的推进力。SpaceTug 还提供推进力,将单独的载人着陆器组件——下降组件 (DE) 和上升组件 (AE)——从低地球轨道 (LEO) 运送到 LLFPO。然后,SLS Block 1 发射猎户座 + ESM,并与 LLFPO 中配对的 DE + AE 组件完成会合。FLARE 提供基线任务以外的可选阶段。 SpaceTug 可以将计划中的 Gateway 组件(包括动力和推进元件 (PPE) 和居住和后勤前哨 (HALO))运送到 LLFPO。FLARE 提供了一种将前体设备运送到月球表面以增强和延长载人任务的选项。借助这些组件(包括充气居住舱和气闸舱、个人机组人员机动车、现场资源利用 (ISRU) 演示以及科学和技术实验),机组人员可以在月球表面探索和进行科学研究长达 14 天。
全球环境与安全监测 (GMES) 的成立是为了满足欧洲决策者日益增长的需求,即获取准确及时的信息服务,以便更好地管理环境、了解和减轻气候变化的影响并确保公民安全。必须具备适当的欧洲地球观测能力,以确保充满活力和有效的 GMES 服务组合的开发运营和可持续性。Sentinel-3 是一项欧洲地球观测卫星任务,旨在支持 GMES 的海洋环境服务,为陆地、大气紧急情况、安全和冰冻圈服务做出贡献。Sentinel-3 任务需要一系列卫星,承诺持续、长期收集质量均匀的数据,以可操作的方式生成和交付,用于数值海洋预测、海洋状态分析、预报和服务提供。测量要求已确定如下: 在全球海洋上获取海面地形 (SSH)、有效波高 (Hs) 和表面风速,其精度和精确度超过 Envisat RA-2。 增强沿海地区、海冰区域和内陆河流、其支流和湖泊的表面地形测量。 为全球海洋和沿海水域确定的红外和热红外辐射(“海陆表面温度”)的精度和精确度与 ENVISAT AATSR 目前在海洋上实现的精度和精确度相当,即<0.3 K),空间分辨率为 1 公里。 每 1 到 3 天通过光学仪器完成全球覆盖。 海洋和沿海水域的可见辐射(“海洋颜色”),其精度和精确度与 ENVISAT MERIS 和 AATSR 数据相当,可在 2 至 3 天内完全覆盖地球,空间分辨率同时为 ≤0.3 公里,并与 SST 测量值共同记录。 陆地表面(包括海冰和冰盖)的可见光、近红外、短波红外和热红外辐射(“陆地颜色和温度”),可在 1 至 2 天内完全覆盖地球,其产品至少与 ENVISAT MERIS、AATSR 和 SPOT Vegetation 以及它们的组合产品相当。Sentinel-3 任务概念的基本 GMES 操作要求是: 使用高倾角极地轨道,实现近乎完整的全球覆盖。 利用现有卫星高度计系统优化海洋表面地形测量覆盖范围。 光学仪器需要具有下降节点赤道穿越时间的太阳同步轨道,以补充现有平台测量及其长期序列,以减轻下午海洋热分层、太阳反光、早晨雾霾和云层的影响。 优化海面温度和海洋颜色测量的测量时间。 近实时数据处理和及时向运营用户提供所有处理产品的稳健交付 在 20 年的计划期限内,连续传输至少与 Envisat 交付质量相同的数据。 2013 年发射第一颗卫星(配备一系列平台以满足观测要求以及稳健、连续的运行数据提供要求)。