参见主题可靠性标准。背景项目 2021-07 的目的是制定可靠性标准,通过改善极端寒冷天气下的运营、准备和协调来提高大容量电力系统 (BES) 的可靠性,正如联邦能源管理委员会 (FERC)、NERC 和区域实体联合工作人员对 2021 年 2 月极端寒冷天气事件的调查(“联合调查报告”)所建议的那样。1 2021 年 2 月事件从 2021 年 2 月 8 日至 20 日,极端寒冷天气和降水导致大量发电机组停电、降额或无法启动,从而导致能源和输电紧急情况(称为“事件”)。事件总稳定负荷削减是美国历史上最大的受控稳定负荷削减事件,也是继 2003 年 8 月东北部停电和 1996 年 8 月西海岸停电之后停电兆瓦 (MW) 负荷数量第三大的事件
太阳喷发是日冕磁场能量的爆炸性释放,表现为太阳耀斑和日冕物质抛射。观测表明,喷发区的核心往往是剪切磁拱,即单一的双极结构,特别是在光球层,相应的磁极性沿强梯度极性反转线(PIL)拉长。什么机制会在单一双极场中触发喷发,以及为什么强PIL的场有利于产生喷发,目前仍不清楚。最近,我们利用高精度模拟,建立了太阳喷发的基本机制,即光球层准静态剪切运动驱动的双极场形成内部电流片,随后快速磁重联触发和驱动喷发。这里我们结合理论分析和数值模拟,研究了不同光球磁通分布即磁图下的基本机制的行为。研究表明,不同磁图的双极场在连续剪切下都表现出类似的演变——从磁能的缓慢储存到快速释放——这符合基本机制并证明了所提出机制的稳健性。此外我们发现具有较强PIL的磁图产生较大的喷发,关键原因是具有较强PIL的剪切双极场可以实现更多的非势能,并且它们的内部电流片可以在较低的高度形成较高的电流密度,从而可以更有效地重联。这也为在具有强PIL的活跃区域中观测到的喷发提供了可行的触发机制。
仔细研究支持 EUV 开发的研究界对于当今的政策制定者和半导体行业尤其重要。EUV 研究始于 20 世纪 80 年代,当时美国半导体行业在双方政府的大力干预下试图抵御崛起的日本公司。与此同时,该行业认识到,新一代光刻光源对于制造未来的先进芯片以维持摩尔定律是必不可少的。今天也存在类似的情况,美国、欧洲和亚洲的政策制定者都在进行千载难逢的努力来保护和促进各自的半导体行业,而崛起的中国公司则试图挑战行业领导者。与此同时,整个半导体行业都认识到一场缓慢发展的生存危机:人工智能的快速发展必须由相应的计算能力的快速发展来维持。然而,摩尔定律的终结就在眼前,即使是 EUV 也无法拯救它。4
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
仅用于研究使用。不适用于诊断程序。本出版物可能包含对您所在国家不可用的产品的引用。请与我们联系以检查您所在国家的这些产品的可用性。未经Shimadzu的书面批准,本出版物的内容不得出于任何商业目的而复制,更改或出售。有关详细信息,请参见http://www.shimadzu.com/about/trademarks/index.html。本出版物中可以使用第三方商标和商标名称来指代实体或其产品/服务,无论它们是否与商标符号“ TM”或“ tm”或“”一起使用。Shimadzu拒绝了以外的商标和商品名称的任何专有权益。本文中包含的信息是“原样”提供给您的,没有任何形式的保证,包括无限制保证其准确性或完整性。Shimadzu对与本出版物的使用有关的任何损害(无论是直接或间接的)都不承担任何责任。本出版物基于出版日期或之前的Shimadzu的信息,并在不通知的情况下进行更改。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
摘要 室内设计专业的历史可以追溯到一百年前,在美国大约可以追溯到 1900 年。虽然我们在当今室内和室外看到的实践和设计元素、图案、主题等可以在全球许多失落的文明中追溯到,例如埃及文明、巴比伦文明、摩亨佐达罗文明等,在这些文明中我们可以看到泥屋或 kaccha 房屋的使用和那个时期的设计图案、美丽的壁画和雕塑,以及青铜和铜器等冶金物品的使用。罗马人和希腊人受到不同古老文明的启发,效仿并在室内使用马赛克地板和壁画等。随后,法国文艺复兴、巴洛克、洛可可和新古典主义艺术运动带来了更高层次的设计思维过程,例如使用彩色玻璃、瓷器和珍珠母等精致材料、精细丝绸和天鹅绒纺织品。从 19 世纪开始,当今的室内设计概念以室内设计师的名义流行起来,室内设计师既注重功能性用具,也注重个性化风格的装饰。室内设计领域经历了漫长的发展历程,从泥土、稻草、茅草和砖房到人造和合成材料,创造了全球新的流行设计理念,也为个人风格树立了榜样。室内设计被定义为一种精炼和增强空间以创造美观环境的艺术。传统上,室内设计更多地是基于艺术和工艺、规范的设计、家居造型、室内装饰和家具。本文旨在阐明以极简主义生活方式为导向的设计的必要性,而不是关注奢华、昂贵和不环保的设计概念,尤其是强调任何建筑或结构的内部和外部。关键词:绿色技术、室内设计、极简主义、可持续生活、环境
基于证据的临床实践指南已通过协定工具进行了审查,以详细说明本指南进行分析(通过英语英文评估指南,对欧洲的研究和评估的缩写),评估了众所周知,该信息众所周知,这些信息既可以评估了众所周知的众所周知的众所周知的信息,又可以评估众所周知的涉及到众所周知的范围。作为有效性的标准。 “良好指南的基本要素”,包括信誉,临床适用性,临床灵活性,清晰度,过程的跨学科性,编程更新和文档。 div>
声子极化子能够实现红外光的波导和定位,具有极强的限制性和低损耗。通常使用互补技术(例如近场光学显微镜和远场反射光谱)来探测此类极化子的空间传播和光谱共振。这里,介绍了红外-可见和频光谱显微镜作为声子极化子光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调红外激光共振激发极化子和对上转换光进行宽场显微镜检测来实现的。该技术用于对 SiC 微柱超表面中局部和传播表面声子极化子的杂交和强耦合进行成像。光谱显微镜允许通过角度相关共振成像同时测量动量空间中的极化子色散,并通过极化子干涉测量法在实空间中测量极化子色散。值得注意的是,可以直接成像强耦合如何影响极化子的空间定位,而这是传统光谱技术无法实现的。在强耦合阻止极化子传播到超表面的激发频率下观察到边缘态的形成。该技术适用于具有破坏反演对称性的广泛极化子材料,可用作快速、非微扰工具来成像极化子杂化和传播。