最多20天或更长时间的能量自给自足?- 这些是Xtura蓬勃发展的挑战。“板载电站”,由330 AH锂电池和车顶架上的2x 135 WP高音太阳能电池板,以及折叠移动太阳能电池板上的额外电源,构成了非常长的自给自足的基础。取决于条件,您可以在更长的时间内保持独立于电网,因为Xtura在旅途中通过加强交流发电机以60 a充电能力充电。带有3 kW的逆变器 /岸功率充电器,船上有很多用于电池充电和烹饪的储量,以及空调系统和其他个人电力消费者。功率共享控制系统可确保最佳利用岸电源资源。由控制面板或智能手机通过控制面板或智能手机的所有关键性能参数和板载电源储备提供了方便的所有关键性能参数和板上电源储备的概述。
累积的水)以毫米(mm)为单位。 因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。 例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即累积的水)以毫米(mm)为单位。因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即每天和每日。建模降水及其聚集体提出了与其他天气变量(例如温度)相比的独特挑战。精确地捕获随着时间或空间的降水的聚集行为对于许多应用至关重要,包括洪水或干旱风险评估。这需要对适当的依赖模型进行典范或隐式规范,以在时空中结合边缘分布,在时间和空间中,不仅极端,而且中度和低降水值都会有助于极端聚集体。特定于降水的另一个方面是其间歇性,这意味着当考虑完整的观察序列时,可以观察到许多零值。这需要将概率分布视为阳性降水的连续成分的混合物,而在没有沉淀的情况下以零为零成分。虽然整个分布对于降水很重要,但它的极端尤其引起了人们的关注,因为它们通过雨水引起的洪水对人们的影响[38],农业[99]和基础设施[85]。对局部极端的研究是极值分析[50,55]的重要早期应用,也是许多方法论发展的催化剂。的确,如果模型未正确指定,则将参数模型用于整个分布可能会导致尾部分位数估计值的显着偏差。因此,使用源自极值理论的模型来估计降水的尾矿[24,8,33]已成为普遍做法。本章回顾了用于研究极端降水的某些关键方面的统计方法,但没有任何声称是详尽的。第1.2节简要概述了典型的数据特征。第1.3节提出了单变量的概率分布,用于在极值和估计其参数的方法中建模可变性。然后,第1.4节演示了这些分布在代表不同持续时间和频率下的预提取强度或返回值时的应用。第1.5节说明了如何在空间上汇总信息以获得更有效的回报率估计值。上述部分中的方法假设极端降水事件是独立的,并且分布相同。但是,有多种原因认为事实并非如此。例如,季节性和空间模式以及气候变化可能引起非组织性。第1.6节回顾了各种检测和建模非组织降水极端的方法。最后一节是一个讨论,介绍了随机发生器的概念,并阐述了为模拟目的建模极端降雨的重要性。
4 perry.banks@ontoinnovation.com,5 aries.peng@ontoinnovation.com摘要 - 对异质整合的需求不断增长,由5G市场驱动,其中包括智能手机,数据中心,服务器,HPC,HPC,AI,AI和IOT应用程序。下一代包装技术需要更严重的覆盖层,以适应更大的包装尺寸,并在大格式柔性面板上使用更精细的螺距芯片互连。异质集成通过将多个硅节点和设计组合在一个软件包中,从而实现了下一代设备性能。包装尺寸预计将显着增长,在未来几年内增加到75 x 75毫米和150 x 150毫米。对于这些要求,具有精细分辨率光刻的极大的曝光场将使包装超过250 x 250毫米,而无需图像缝制,同时超过了这些包装的侵略性叠加和临界均匀性要求。满足异质整合需求的光刻挑战是市场上当前可用解决方案的暴露场大小的限制。使用缝合的多次镜头,这不仅影响生产力性能,而且会影响缝合边界处的潜在产量损失。应对上述关键光刻挑战成为异质整合的重要任务,而具有精细分辨率光刻的极大的暴露场是完成此任务的最佳解决方案之一。在本文中,选择了一个515 mm x 510 mm面板作为测试工具,我们将在此面板上展示一个具有精细分辨率技术的非常大的曝光场。此演示提供了有关该新技术将如何应对大型包装尺寸流程的挑战的结果和详细信息。关键字,预先包装,高级IC底物,大型曝光字段,精细分辨率,面板级包装,异质,覆盖,覆盖,缝线,吞吐量。
Agersnap, S.、Larsen, WB、Knudsen, SW、Strand, D.、Thomsen, PF、Hesselsøe, M. 等人 (2017)。使用淡水样本中的环境 DNA 监测贵重、信号和窄爪龙虾。PLoS ONE,12(6),e0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz, EA、Sassoubre, LM 和 Boehm, AB (2017)。海洋鱼类环境 DNA 的持久性和阳光的影响。PLoS ONE,12(9),e0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes, MA 和 Turner, CR (2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学,17(1),1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Boulanger, E.、Loiseau, N.、Valentini, A.、Arnal, V.、Boissery, P.、Dejean, T. 等人 (2021)。环境 DNA 宏条形码揭示并解开了地中海海洋保护区的生物多样性保护悖论。英国皇家学会学报 B,288(1949),20210112。https://doi. org/10.1098/rspb.2021.0112 Boussarie, G.、Bakker, J.、Wangensteen, OS、Mariani, S.、Bonnin, L.、Juhel, JB 等人。 (2018)。环境 DNA 揭示了鲨鱼的黑暗多样性。科学进展,4(5),eaap9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd, AM、Cooper, MK、Le Port, A.、Schils, T.、Mills, MS、Deinhart, ME 等人 (2021)。利用环境 DNA 五十年来首次在密克罗尼西亚关岛发现极度濒危的路氏锤头鲨(Sphyrna lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin, SA、Benes, V.、Garson, JA、Hellemans, J.、Huggett, J.、Kubista, M. 等人 (2009)。 MIQE 指南:定量实时 PCR 实验发表的最低限度信息。临床化学,55(4),611 – 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard, I.、Laporte, M.、Côté, G.、April, J. 和 Bernatchez, L. (2022)。生物和非生物因素对鱼类环境 DNA 产生和降解的影响:实验评估。环境 DNA,4(2),453 – 468。https://doi.org/10.1002/edn3.266 Collins, RA、Wangensteen, OS、O'Gorman, EJ、Mariani, S.、Sims, DW 和 Genner, MJ (2018)。海洋中环境 DNA 的持久性
“弹性文化高度重视协作。在疫情期间,不仅我们团队之间的极度协作,而且与客户、供应商、政府和其他合作伙伴之间的极度协作也发挥了重要作用。”
种群规模和种群增长率的 5 年平均变化,以及 B) 用于将畜群范围分配到从极度关注到低度关注的五个类别之一的评分矩阵。将种群规模和增长率的各个层级得分相加并交叉,以确定相对的畜群范围管理目标(即极度关注、非常高度关注、高度关注、中度关注和低度关注)。小于 1 的 Lambda 值表示种群数量减少(例如,0.97 表示年下降率为 3%),大于 1 的值表示种群数量增加(例如,1.03 表示年增长率为 3%)。................................................................................................................................ 179