图2纳米孔中水氧(底部)和氢原子(顶部)的密度曲线在位于z =±9.31Å处的平行石墨烯片之间的不同电压下。正电场从左到右壁指向,报告的电压对应于平均静电电势之间的差异。除非另有说明,否则在整个手稿中使用相同的色压关系。
根据作者克劳斯·凯斯特尔(Claus Kestel),马文·盖塞尔哈特(Marvin Geiselhart),卢卡斯·约翰逊(Lucas Johannsen),斯蒂芬·恩·布林克(Stephan Ten Brink)和诺伯特·韦恩(Norbert Wehn)的作者克劳斯·凯斯特尔(Claus Kestel)和诺伯特·韦恩(Norbert Wehn),的题为“ 6G urllc的自动化集合代码解码器”,这是即将到来的6G标准标准的urllc sereario。 实现接近ML的性能是具有挑战性的,尤其是对于短块长度。 极性代码是此应用程序的有前途的候选人。 上述论文讨论了连续的取消列表(SCL)解码算法,该算法提供了良好的误差校正性能,但在高计算解码的复杂性下。 本文引入了自动形态集合解码(AED)方法,该方法在并行执行了几种低复杂性解码。 本文介绍了AED架构,并将其与最先进的SCL解码器进行了比较。 因此,鉴于Kestel等人的理论和实验证明,我们在这里概述了由TLB GmbH管理的PCT应用保护的这项技术发明的位置和背景。的题为“ 6G urllc的自动化集合代码解码器”,这是即将到来的6G标准标准的urllc sereario。实现接近ML的性能是具有挑战性的,尤其是对于短块长度。极性代码是此应用程序的有前途的候选人。上述论文讨论了连续的取消列表(SCL)解码算法,该算法提供了良好的误差校正性能,但在高计算解码的复杂性下。本文引入了自动形态集合解码(AED)方法,该方法在并行执行了几种低复杂性解码。本文介绍了AED架构,并将其与最先进的SCL解码器进行了比较。因此,鉴于Kestel等人的理论和实验证明,我们在这里概述了由TLB GmbH管理的PCT应用保护的这项技术发明的位置和背景。
肽聚糖(PG)是一种网状结构,是细菌细胞壁的主要成分,对于维持细胞完整性和形状至关重要。大多数细菌依靠青霉素结合蛋白(PBP)进行交联,但某些物种也采用LD-转肽酶(LDTS)。与PBP不同,LDT的本质和生物学功能在很大程度上不清楚。以其极性生长而闻名的字母细菌的杂种菌序,其PG异常富含LD-Crosslinks,这表明LDT在这些细菌中可能在PG合成中起更重要的作用。在这里,我们研究了植物病原体农杆菌tumefaciens中的LDT,发现该细菌中至少有14个假定的LDT中的14种引起的LD-肽对其存活至关重要。值得注意的是,缺乏独特的7个LDT的突变体在杂种菌中广泛保守的突变体表现出降低的LD互动和PG将PG束缚到外膜β-贝尔β-桶蛋白上的链接。因此,这种突变体遭受了严重的健身损失和细胞形状的圆形,强调了这些菌粒特异性LDT在维持细胞壁完整性和促进延伸方面所起的关键作用。tn-sequering屏幕表现出了a的非冗余功能。Tumefaciens LDTS。具体而言,连字符特异性LDTs与除法和细胞周期蛋白表现出合成的遗传相互作用,而来自另一组的单个LDT。此外,我们的发现表明,缺乏所有LDT的菌株表现出独特的表型特征和遗传相互作用。总体而言,我们的工作强调了ld-rosslinking在a中的关键作用。tume-faciens细胞壁完整性和生长,并为这些交联活动的功能专业化提供了见解。
随着国际秩序朝着多极性发展,抽象的战略自治已成为几个州的指导原则。土耳其还试图通过在非西方世界建立新的联系来从其传统的西方盟友那里开发一个更自主的空间,从俄罗斯 - 中国轴心到中东及以后。本文探讨了土耳其外交政策中战略自治的思想和实践。我们认为,战略自主权不是由“对冲”行为预先确定或机械驱动的。我们参考其三个基本维度来概念化战略自治:结构取向,政治动机和经济基础设施。在这种情况下,我们强调了自2011年以来土耳其外交政策中的两个软点。首先,地缘政治要求和国内政策优先事项经常相互矛盾,这使国家无法有效实施自治权的政策。第二,战略自主权主要与“高政治”有关,而没有适当关注其地理经济学维度,其形式是坚实的政治基本原理和经济安全。
具有长寿命相干性的量子态对于量子计算、模拟和计量学至关重要。在单重态振转基态中制备的超冷分子的核自旋态是编码和存储量子信息的绝佳候选。然而,重要的是要了解这些量子比特的所有退相干源,然后消除它们,以达到尽可能长的相干时间。在这里,我们使用高分辨率拉姆齐光谱法全面表征了光学捕获的 RbCs 分子超冷气体中存储量子比特退相干的主要机制。在详细了解分子超精细结构的指导下,我们将磁场调整到一对超精细状态具有相同磁矩的位置。这些状态形成一个量子比特,它对磁场的变化不敏感。我们的实验揭示了状态之间微妙的微分张量光移,这是由旋转状态的弱混合引起的。我们演示了如何通过将线性偏振陷阱光和施加的磁场之间的角度设置为魔角反余弦(1 / √
“这项研究强调了尽早培养健康的屏幕使用习惯的重要性,”多伦多大学社会工作因子助理教授助理教授凯尔·甘森(Kyle Ganson)博士说。“未来的研究可以帮助我们更好地了解将屏幕使用与躁狂症状联系起来的行为和大脑机制,以帮助预防和干预工作。”
深层的下次波长激光器(或纳米剂)高度要求在纳米级的紧凑芯片上生物成像和感测。在可见范围内,所有三个维度短的单粒子纳米仪的开发的主要障碍之一是高激光阈值和由此产生的过热。在这里,我们在Cuboid CSPBBR 3纳米颗粒中阐述激子 - 孔子凝结和镜像MIE模式,以在其超小为0.53μm的可见波长下从其超小为0.53μm的可见波长(从其超小为0.53μm)(≈0.007μm3或≈λ3 /20 /20)实现。通过直接构造具有相似材料参数的相应的一维和二维波引物系统,证明了来自所有三个维度的纳米腔的极化性质。这种深层的亚波长纳米震剂不仅是由激子结合能的高值(≈35meV),re骨指数(低温下的2.5)和CSPBBR 3的发光量子产率,而且还通过对MIE弥补的优化而通过质量取得了良好的量子的优化。此外,最佳激光条件的关键参数是CSPBBR 3中的自由光谱范围和声子频谱,该光谱控制了极化子凝结路径。这种化学合成的胶体CSPBBR 3纳米酶可能会在任意表面上放置,这使它们成为与各种芯片系统集成的多功能工具。
这是一篇文章的pdf文件,该文章在接受后经历了增强功能,例如添加封面和元数据,并为可读性而格式化,但尚未是记录的定义版本。此版本将在以最终形式发布之前进行其他复制,排版和审查,但是我们正在提供此版本以赋予本文的早期可见性。请注意,在生产过程中,可能会发现可能影响内容的错误,以及适用于期刊的所有法律免责声明。
摘要。低聚聚乙二醇 (PEG) 链中的振动能量传输可以通过光学振动链带以弹道方式进行,表现出快速而恒定的传输速度和高传输效率,从而提供了将超过 1000 cm -1 的大量能量传输到超过 60 Å 的远距离的方法。我们报告了分子内能量传输时间、链间传输速度和端基冷却速率如何取决于环境的刚性和极性。实验使用端基标记的 PEG 低聚物和二维红外 (2DIR) 光谱进行。弹道能量传输在链的一端通过在约 2100 cm -1 处激发叠氮基部分来启动,并通过探测琥珀酰亚胺酯的羰基拉伸模式在链的另一端记录下来。我们发现环境的刚性(聚苯乙烯 (PS) 基质与极性相似的溶液)不会对能量传输时间和链传输速度产生太大影响。这些结果表明,在弱极性介质中,尽管溶液中存在快速松弛成分,但溶液中发生的动态波动(但在固体基质中基本冻结)并不是链状态失相的主要原因。不同介质中传输时间的相似性表明二级链结构对 PEG 链中的传输影响不大。溶剂极性显著影响分子内传输:极性 DMSO 中的传输效率比非极性 CCl 4 或 PS 中的传输效率小约 1.6 倍。在极性更强的溶剂中,琥珀酰亚胺酯端基的冷却时间缩短,影响等待时间依赖形状,从而影响能量到达报告器的时间。本文分析了从数据中提取能量到达时间的不同方法。观察到的链间传输时间对溶剂极性的依赖性表明存在多个以不同群速度在 PEG 链中传播的波包。1. 简介。
正确选择投影操作员,对我们来说是零 - 以及内存内核,kðtt \ skÞ,其中s k是kðtt的时间kðttÞ¼0。通过以这种内存内核来编写预计的动态,既可以仅使用短时数据来捕获复杂的(非马克维亚)短时间行为和长期流行量的详细平衡。该原理的最新示例是计算大型生物分子折叠中的平均第一个通道时间,其中只有25 ps参考模拟数据包含建模M s上的事件所需的信息,即,三个数量级长。27这还表明,GQME是动力学问题的介绍,该动力学问题是动态计算对内存核的目标,因此,与用户可能希望采用的任何动态方法相兼容,包括27 - 29,包括近似近似技术,包括表面跳跃的30 - 32-32和EHRENEFEST动力学。33,34然而,此维度降低过程的成本节省依赖于感兴趣的变量与动态变量之间的时间表之间的分离。的确,内存内核仍然与投影空间中排除的最慢变量一样长。因此,即使在运输系数的计算中,将所有最慢的自由度放置在投影空间中也是至关重要的。在实际层面上,投影操作员的选择对计算可行性产生了重大影响。35此GQME用位点数量正式缩放n。这是因为构建动力学N×N矩阵,典型地需要至少n个不同的模拟。例如,以前的工作采取了一种非平衡策略,将投影到局部电子状态的种群上,以计算沿模型一维链的二极管传输系数。36在这里,我们通过久保公式采用了不同的策略,该策略将材料的频率分辨电导率与电流的平衡iCtifuation iClusion联系起来。这种关系表明,采用Mori型投影操作员26与当前的操作员是唯一可观察到的感兴趣的。这种选择的显着结果是,只需要一个平衡计算即可构建GQME,从而使该方法的缩放与系统大小无关。我们的工作表明,该策略是一种紧凑而有效的途径,以编码当前响应和频率分辨电导率。为什么到现在为止,要用Mori - Zwanzig理论桥接Kubo形式主义,以用于极化材料中的电导率预测?虽然地面电子状态上的路径积分模拟已成为主流,但37 - 43