LED 电源 12/24 V DC 最大电流消耗 42,6 mA (12 V DC)/70,4 mA (24 V DC) 保护 防止电源极性变化 灯光 四种基本颜色的 LED 灯:红色、绿色、黄色和蓝色 检测距离 集成非接触式开关,自适应检测距离可达 50 mm
总而言之,提出的DFT研究表明,在晶状体底物上的N止极gan结构在能量上比GA极极可取。在群集中Ga和N原子的不同可能构型中,仅N止痛器一个是稳定的,而最初的GA极性结构则证明了AB-Initio优化期间的极性变化。DFT建模结果与在硅底物顶部在石墨烯层上生长的GAN纳米线的独家N极性的实验观察一致[2,3]。
Triboelectric纳米生成器(Tengs)在为各种可穿戴设备获得可持续能源方面起着至关重要的作用。聚合物材料是量的重要组成部分。生物聚合物是适合Tengs的材料,因为它们具有降解性,自然采购和成本效果。在此,总结了常用生物聚合物和精心设计的仿生技术的最新进展。详细概述了天然橡胶,多糖,基于蛋白质的生物聚合物和其他常见的合成生物聚合物在Teng技术中的应用。根据其电力能力,极性变化和特定功能,讨论了每个生物聚合物的活性和功能层。还总结了特定生物聚合物的重要仿生策略和相关应用,以指导Teng的结构和功能设计。将来,对摩擦性生物聚合物的研究可能会着重于探索替代候选者,增强电荷密度和扩大功能。在本综述中提出了基于生物聚合物的tengs的各种可能应用。通过将生物聚合物和相关的仿生方法应用于Teng设备,Teng在医疗保健领域的应用,环境监测以及可穿戴/可植入的电子设备可以进一步促进。
KCNT1中的变体与各种癫痫表型有关,包括癫痫发作的癫痫病,迁移局灶性癫痫发作(EIMFS),非EEIMFS发育和癫痫性脑病,自体性占主导地位或散发性睡眠超级乳腺癌epilepsy和epilepsy和焦点。在这里,我们描述了一个受抗药性局灶性癫痫发作,发育延迟和行为障碍影响的女孩,这是由小说的新生杂合失误KCNT1变体(c.2809a> g,p.s937g)引起的。与野生型相比,在瞬时转染的中国仓鼠卵巢(CHO)细胞中的功能表征表明,由KCNT1 P.S937G变体确定了强大的功能效应,包括最大电流密度增加和电流激活阈值的超极性变化。暴露于野生型和突变型KCNT1通道表达的抗抑郁药抗氟西汀。用氟西汀对探针的处理导致了长时间的电链术的改善,癫痫发作消失和更好的脑电图背景组织,并改善了行为和情绪。总的来说,这些结果表明,基于概率的遗传和功能特征,可以重新使用抗抑郁药氟西汀,以治疗KCNT1中受功能的变异引起的局灶性癫痫。需要进一步的研究来验证该方法是否也可以应用于KCNT1相关癫痫谱的其他表型。
应用说明 23:Innovate 的“直接数字”宽带技术实现的发动机控制策略 摘要 氧传感器是当今大多数内燃机的关键部件。Innovate 的“直接数字”技术实现了新一代氧传感器,它们比目前最好的宽带氧传感器更快、更准确、更可靠、成本更低。这反过来又实现了发动机控制的新策略。虽然 Innovate 技术最初的商业认可是在性能和赛车市场,但最大的收益将是在 OE 市场,在该市场中,可以设计和编程工厂原始 ECU 以利用直接数字技术。背景:氧化锆氧传感器简史 自 20 世纪 70 年代中期以来,氧化锆传感器就已在量产汽车中使用。第一批传感器是带有 1 或 2 根电线的“非加热顶针”设计。80 年代初引入了“加热顶针”设计,该设计升温更快,并有 3 或 4 根电线。 4 线“平面”传感器于 90 年代末开始使用,目前占所有新平台的 50% 以上,部分原因是成本低且可靠性高。“宽带”5 线传感器(加热、平面、双电池)是最新的,是高性能、直喷、分层充电、灵活燃料、ULEV 和其他要求苛刻的应用所必需的。减缓宽带传感器采用的因素包括高制造成本和可靠性问题。虽然直接数字控制方法最初是为宽带氧气传感器开发的,但最大的突破可能是它实现了新一代传感器,该传感器结合了 4 线平面传感器的低成本和高可靠性,同时匹配精度范围,并超过了当前最佳宽带传感器的响应能力。该技术美国专利 #6,978,655,标题为“用于测量气体氧气浓度的系统、装置和方法”,详细介绍了以下总结的发明。凭借创新测量原理,单个 Nernst 电池可以同时用作泵和参考电池。Direct Digital 不使用常规 PID(比例积分微分)反馈机制来控制宽带传感器。相反,泵电流为正,直到参考显示 < Lambda 1。然后泵电流的极性反转,直到参考显示 > Lambda 1。这是通过一个小的滞后完成的。这样,测量室中的测量气体在化学计量附近以 300-800 Hz 振荡。振荡频率取决于恒定(但极性变化)的泵电流、滞后、传感器本身和 Lambda。频率在 Lambda 1 处达到最大值。这基本上是一个 2 点调节器,或者用数字电子术语来说,是 delta-sigma 模拟到数字转换器的工作原理,除了这里测量的模拟值直接是废气。该振荡的占空比 PWM 用 (t1 - t2) / (t2 + t2) 计算,因此范围为 +/- 1.0。t1 是泵电流正极性的持续时间,t2 是负电流极性的持续时间(均以 16 位精度测量)。使用 PWMair(空气中的占空比),可以直接用 PWM / PWMair 计算泵单元的 O2 流速,因此可以从中计算 Lambda。由于传感器仅用于恒定且相对较高的 Ip,但极性变化,因此 PWM 与 O2 流量完全线性,并且在标准化为 PWMair 后与特定传感器的 Lambda/Ip 曲线无关。由于
应用说明 23:Innovate 的“直接数字”宽带技术实现的发动机控制策略摘要 氧气传感器是当今大多数内燃机的关键部件。Innovate 的“直接数字”技术使新一代氧气传感器比目前最好的宽带氧气传感器更快、更准确、更可靠、成本更低。这反过来又使发动机控制的新策略成为可能。虽然 Innovate 技术最初的商业认可是在性能和赛车市场,但最大的收益将在 OE 市场实现,工厂原装 ECU 可以设计和编程以利用直接数字技术。背景:氧化锆氧气传感器简史 自 20 世纪 70 年代中期以来,氧化锆传感器已在量产汽车中使用。第一批传感器是带有 1 或 2 根电线的“非加热套管”设计。20 世纪 80 年代初引入了“加热套管”设计,这种设计升温更快,并且有 3 或 4 根电线。4 线“平面”传感器于 20 世纪 90 年代末开始使用,现在占所有新平台的 50% 以上,部分原因是成本低且可靠性高。“宽带”5 线传感器(加热、平面、双电池)是最新的,是高性能、直接喷射、分层充电、灵活燃料、ULEV 和其他要求苛刻的应用所必需的。减缓宽带传感器采用的因素包括高制造成本和可靠性问题。尽管直接数字控制方法最初是针对宽带氧气传感器开发的,但最大的突破或许在于它能够实现新一代传感器,该传感器结合了 4 线平面传感器的低成本和高可靠性,同时匹配精度范围,并超过当前最佳宽带传感器的响应能力。该技术美国专利 #6,978,655,标题为“用于测量气体氧气浓度的系统、装置和方法”,详细介绍了以下总结的发明。凭借创新的测量原理,单个 Nernst 电池可以同时用作泵和参考电池。直接数字不使用常规 PID(比例-积分-微分)反馈机制来控制宽带传感器。相反,泵电流为正,直到参考显示 < Lambda 1。然后泵电流的极性反转,直到参考显示 > Lambda 1。这是通过一个小的滞后完成的。频率在 Lambda 1 处达到最大值。由于这样,测量室中的测量气体在化学计量附近以 300-800 Hz 的频率振荡。振荡频率取决于恒定(但极性变化)的泵电流、磁滞、传感器本身和 Lambda。这基本上是一个 2 点调节器,或者用数字电子术语来说,是 delta-sigma 模拟数字转换器的工作原理,只是这里测量的模拟值直接是废气。该振荡的占空比 PWM 用 (t1 - t2) / (t2 + t2) 计算,因此范围为 +/- 1.0。t1 是泵电流正极性的持续时间,t2 是负电流极性的持续时间(均以 16 位精度测量)。使用 PWMair(空气中的占空比),可以直接用 PWM/PWMair 计算泵单元的 O2 流量,因此可以从中计算 Lambda。由于传感器仅用于恒定且相对较高的 Ip,但极性会发生变化,因此 PWM 与 O2 流量完全呈线性关系,并且在标准化为 PWMair 后与特定传感器的 Lambda/Ip 曲线无关。