摘要:本研究描述了森林中Shorea Robusta再生的状态,该状态在1996 - 2000年期间面临Sal-Borer流行的爆发。在隔间中进行了补救罪以去除感染的树木。隔室。发现所有隔间中的盐幼苗密度都高(> 11000幼苗/公顷),表明社区中足够数量的成年树木。岩石罗布斯塔的杆子作物仅记录在适度砍伐的隔间中。极杆作物的密度范围在每公顷33-333茎之间,研究群落中极点作物的低密度可能是由于生物因素和放牧所致。幼苗的建立取决于局部因素和冠层开口。由浓重和非常砍伐产生的冠层间隙占据了高密度的Lagerstroemia Parviflora,Diospyros Melanoxylon和latifolia anogeissus latifolia,在高密度上占据,这与SAL竞争了冠层的开放空间。Sal-Borer侵扰对Shorea Robusta Forest的再生具有持久的影响。中度侵扰可能会改变人口的增长率,但大量侵扰可能会导致社区结构和组成的变化。关键字:冠层间隙,撞击,杆作物,补救罪,Sal Heartwood Borer
定义了整个积分的每个极点z z z z z z z z z 7n的sudoModes vvξn(r),并在给定的一组模式索引ξ中由n索引。使用残基定理是一个合理的假设,因为对于t≥0的∂t〜c 0(t)是连续的,这是等式中k的积分。11必须对所有τ≥0收敛,因此R∞0dkρ(k)g2ξ(k,r)收敛。此外,人们期望足够大的r,r'的行为是术语∝ exp( - ik(cτ±r))的组合,该术语对应于传入波或即将波动的空间成分。将整数分成这些组件产生的术语会在上半层中收敛。我们以这种方式对下面的球形介电粒子执行积分,我们发现一半平面收敛条件会产生步骤函数θ(τ -∆ t(r,r,r'))τ>0。时间延迟∆ t(r,r')是光通过纳米颗粒从r传播到r'的时间,并且通常取决于其几何形状。在下面的第六节中,我们显示了如何在等式中出现的下限k = 0的积分。10可以以与等式的分析方式评估。12通过识别积分的对称和反对称部分。我们讨论了第六节末尾的较低集成极限扩展到-∞的含义。
摘要:氧化应激介导的损伤通常是帕金森氏病(PD)的下游结果,帕金森氏病(PD)的标志是大脑的黑骨术区域内多巴胺能神经元的急剧下降,这构成了患者有症状的运动降低。调节氧化应激水平可能会在预防PD病理学方面采用有益的方法。在这里,我们评估了烟酰胺腺苷磷酸腺嘌呤(NADPH)氧化酶(NOX)抑制剂,这是由Aptabio Theraphators与NOX-1,2和4。利用N27大鼠多巴胺能细胞和C57BL/6小鼠,我们确定了α-核蛋白预先形成的纤维(PFF)诱导的蛋白质聚集的暴露,这是PD病理学的标志。对新颖化合物的体外评估表明,细胞活力的增加并降低了在10 nm最佳浓度下暴露于PFF的细胞毒性,ROS和蛋白质聚集(Thio thio-flavin-t染色)。同时,口服处理在行为测试中缓解了运动率,例如后肢紧握,旋转rot,极点,嵌套和修饰测试,通过减少蛋白质聚集,基于营救的多巴胺能神经元损失。在纹状体和腹中脑区域内抑制NOX-1,2和4,包括Nigra Compacta(SNC)有助于神经保护/恢复效应,使其成为PD的潜在治疗选择。
心肌细胞身份的抽象维持对于正常的心脏发育和功能至关重要。但是,我们对心肌细胞可塑性的理解仍然不完整。在这里,我们表明斑马鱼转录因子NR2F1A的持续表达可防止心室心肌细胞(VC)和起搏器心肌细胞(PC)身份的逐步获得性。NR2F1A突变体斑马鱼胚胎的流动心房心肌细胞(AC)的转录组分析显示,VC标记基因表达增加和核心PC调节基因表达的改变,包括降低NKX2.5的表达,NKX2.5,PC差异的临界抑制器。在NR2F1A突变体中心庭的动脉(流出)极点,心肌细胞溶于膨胀的房屋内管中的VC身份。然而,在中庭的静脉(流入)极(流入)的极中,AC转分化向心房朝向动脉极的PC进行了渐进式浪潮。恢复NKX2.5足以抑制NR2F1A突变体中心中的PC标记同一性,并且对染色质可及性的分析确定了在直接与PC相邻的心肌中表达的NR2F1A依赖性NKX2.5增强子。crispr/cas9介导的假定NKX2.5增强子的缺失导致表达NKX2.5的ACS的损失和PC报告的扩展,从而支持NR2F1A通过保持NKX2.5表达来限制静脉ACS中的PC差异。离散房间内的AC身份的NR2F依赖性维护可能会提供对并发结构先天性心脏缺陷和相关心律不齐的分子病因的见解。
摘要:法医学诊断涉及许多学科和技术领域,包括死亡学和临床法医学,以及由这两大极点动员的所有学科:刑事学、弹道学、人类学、昆虫学、遗传学等。诊断涵盖三个主要相互关联的概念:病理分类(诊断);体征或症状空间;以及使一组体征与类别相匹配的操作(诊断方法)。数字化在所有活动领域的推广——包括法医学、我们社会对数据和数字设备的适应以及计算、存储和数据分析能力的发展——为日益广泛地采用人工智能 (AI) 创造了有利环境。人工智能可以干预诊断的三个方面:病理类别空间、体征空间,以及最后两个空间之间的匹配操作。它的干预可以采取多种形式:它可以提高诊断方法的性能(准确性、可靠性、稳健性、速度等),更好地定义或分离已知的诊断类别,或更好地关联已知的体征。但它也可以带来新的元素,而不仅仅是提高性能:人工智能利用任何数据(这里的数据扩展了症状和经典体征的概念,这些体征来自人类观察者的五种感官,通过技术手段放大或未放大,或来自互补检查工具,如成像)。通过其关联各种大容量数据源的能力,以及发现未怀疑的关联的能力,人工智能可以重新定义诊断类别,使用新体征并实施新的诊断方法。我们在本文中介绍了人工智能如何在法医科学中应用,其方法主要侧重于改进现有技术。我们还研究了与其普及相关的问题、其发展和采用的障碍以及与在法医诊断中使用人工智能相关的风险。
染色体分离需要动粒蛋白复合物和有丝分裂纺锤体的协调,这对于两个子细胞之间的准确遗传分裂至关重要。动粒是一种位于姊妹染色单体着丝粒的蛋白复合物。在有丝分裂过程中,可以观察到动粒实际上是在有丝分裂纺锤体的引导下将姊妹染色单体“引导”到伸长细胞的相反极点。有人提出,动粒复合物中的小蛋白 Stu1 有助于延迟芽殖酵母酿酒酵母的后期,直到每条染色体都附着在有丝分裂纺锤体上。Stu1 与纺锤体相互作用,并在纺锤体伸长时与其同步移动。磷酸化可能在调节 Stu1 功能方面发挥重要作用。在酵母中,MELT 是一种常见的磷酸化位点,因此,去除 Stu1 上 MELT 基序上的苏氨酸氨基酸可能会影响姐妹染色单体正确分离的能力,从而导致酵母活力下降。MELT 是真菌中保存良好的序列,并且已知是 Stu1 其他同源物中的磷酸化位点。利用 CRISPR-Cas9 酶,我们将在芽殖酵母 STU1 基因中引入磷酸化无效突变,以将 MELT 序列中的苏氨酸 719 密码子替换为缬氨酸密码子。我们假设这种突变会导致 Stu1 蛋白发生故障,这可能会阻碍其协调纺锤体和着丝粒附着的能力,并进一步阻止有丝分裂期间染色体分离。
AD 的使用条件 飞越 AD 禁止在 300 米(1000 英尺)以下的 H24 ASFC AD 仅可在白天使用 AD 禁止用于武装 ACFT AD 禁止用于不带无线电的 ACFT 除 TWY 和 RWY 外,AD 不可用 限制使用 AD:1 - 主要用于接收 MIL 和国家空中交通 2- 用于在那里授权的特定活动 3- 用于基于 AD LDG 的 ACFT,并遵守发送给 DV / OPS 极点负责人的 PPR。同意的 NR 必须填写在 FPL 的第 18 框中 同意的 NR 填写在 FPL 的第 18 框中 CTR 和 CTA 激活时间之外 SALON:自我信息频率 RWY 16/34:滑入雨天 BAR AERAZUR F30 类型 5 在跑道两端,高度:1.5 米 对于 TORA、ASDA 和 LDA,实际距离可在跑道标记结束前 50 米处获得 VFR 特殊反应堆: VIS :5 公里 升限:1000 英尺 常规: 能见度:3 公里 升限:1000 英尺 HEL:能见度:800 米 升限:600 英尺 特殊程序和说明 AD 的东部保留给 GLD、无人驾驶飞行、“学校”发动机飞行和特技训练。LF- R 276 活跃的法国巡逻兵需要强制绕行,除授权的 ACFT 滑行计划外,限制 TWY 和 PRKG: - TWY 3:关闭 - C130: - 仅限 VIP PRKG - 禁止 TWY 7、8 和 9 - A400M:禁止 PRKG 和 TWY < /div >
摘要:重力波(GWS)是子午线和上层平流层中子午倾覆循环的关键驱动因素之一。他们在气候模型中的表示遭受了不足的分辨率和对其参数化的有限约束。这种掩盖了对气候变化中中大气环流变化的评估。This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer- scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanaly- sis (ERA5), to a coarse-resolution climate model (EMAC).与ERE5相比,发现Zonal GW动量(GWMF)的分辨垂直浮标(GWMF)的强度至少为2-2.5。与IFS中解决的GWMF相比,ERA5和EMAC的选址继续产生60 8 s的过度GWMF极点,从而在已解决的GWMF和参数化的GWMF之间产生明显的差异。在IFS和ERA5中对GW Pro Files的类似验证验证了相似的波结构。,即使在; 1公里的分辨率,IFS中的解析波弱于LIDAR观察到的波。此外,跨数据集的GWMF估计值表明,基于温度的代理基于线性GWS的中频近似,由于简化的GWMF和GW波长估计的数据高估了GWMF。总体而言,该分析为参数化验证提供了GWMF基准,并要求三维GW参数化,更好的上限处理和垂直分辨率随着模型中水平分辨率的增加而增加,以进行更现实的GW分析。
在三种最先进的气候模型中分析了从SSP5-8.5扩展方案中全球变暖至2300的极端情况,其中包括两个具有气候灵敏度大于4.5°C的模型。结果是在历史记录和未来的模拟中看到的一些最大的变暖量。模拟显示在前工业和23世纪末之间的9.3至17.5°C全球平均温度变化之间。全球温度的极大变化允许在气候动态中探索基本问题,例如确定水分和能量传输及其与全球大气 - 海洋循环的关系。三个模型进行了SSP5-8.5至2300的模拟:MRI-ESM2-0,IPSL-CM6A-LR和CANESM5。我们分析了这些模拟,以提高人们对气候动态的理解,而不是为期货。在具有最变暖的,Canesm5的模型中,地球的水分含量超过双倍,并且水文循环的强度增加。在CANESM5和IPSL-CM6A-LR中,几乎所有海冰在夏季和冬季都在两个半球中都消除了。在所有三个型号中,哈德利循环都会削弱,对流层顶的高度上升,风暴轨道在不同程度上移动了极点。我们使用扩散框架分析模拟中潮湿的静态传输。干燥的静态通量减小以补偿增加的水分传输;但是,补偿是不完美的。总大气转运的增加,但没有恒定扩散率的速度。涡流强度的降低在确定能量传输方面起着重要作用,云反馈的模式和海洋循环的强度也是如此。
摘要 了解和预测废弃地球静止轨道卫星和火箭体的自旋状态演变对于空间态势感知、主动清除碎片、卫星维修、异常解析和小行星演化都具有重要意义。有明确的证据表明,许多废弃地球静止轨道卫星自旋状态主要由 Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) 效应驱动。YORP 效应是由于太阳辐射和热再发射扭矩引起的自旋状态演变。观测对于了解 YORP 如何驱动自旋状态以及验证动力学模型至关重要。不幸的是,从无处不在的光度光变曲线数据中提取自旋状态(自旋周期、转动角动量矢量、瞬时姿态)具有挑战性,因为地面望远镜无法解析地球静止轨道卫星。即使对于众所周知的物体,光变曲线反演也常常会在建模不确定性(即详细的卫星几何形状、反射特性)内产生几个或更多非常拟合的自旋状态解。此外,有强有力的证据表明,YORP 效应使卫星从匀速旋转转变为非主轴翻滚。这种翻滚状态使光变曲线反演过程更加复杂,因为翻滚运动由两个独立的周期驱动。为了帮助自旋状态分析,特别是翻滚情况,我们结合了在 Goldstone 深空通信中心获得的多普勒雷达观测数据。通过研究著名的退役 GOES 气象卫星系列,我们获得了所有目标的明确自旋周期估计值和非常窄的极点解,与光变曲线数据无关。我们注意到在两个月的时间内,自旋速度和极点方向发生了显著变化。这些发现与 YORP 驱动的演化一致。