在2021年6月和7月,一场致命的热浪吞没了北美西北海岸。有广泛的科学证据表明,由于气候变化,频率和严重程度等极端天气模式都在增加。但是,不足以探索房东特定法,住房正义和气候变化的交集。在整个加拿大大部分地区,热量被认为是“至关重要的服务”,尽管省份以略有不同的方式构建了这些政策,但几乎所有情况都需要房东提供。省级没有政策可以保证房客拥有空调或足够凉爽的生活空间的权利。对不列颠哥伦比亚省目前的居民租赁立法现状的分析表明,立法几乎不包括保护租户免受极端温度时期的任何规定。源于1950年代的社会经济和政治条件所产生的制度化的不公正行为,也隔离了租户社区,以至于尝试大规模动员和社区主导的行动的尝试在很大程度上没有成功。这表明卑诗省将受益于各个组织的住房权利行动主义的集体化,并推动住宅租赁分支机构修改法律,从而保护房客免受极端天气事件的影响。
摘要:使用极端微生物的生物修复由于其独特的自然生物过程在各种极端环境中繁衍生息,因此引起了公众的关注。极端微生物提供了一种有效,可持续和具有成本效益的策略,以在极端条件下补救有毒环境污染物。极性微生物是根据它们在各种极端环境中适应和生长的能力来分类的,其中包括具有不同自适应性状的各种微生物。一些极端嗜微生物包括嗜热剂,热疗,精神噬菌体,嗜酸剂,碱性,蜂巢虫,卤素,压电,金属固醇,毒剂,放射性,放射性和微氧化物。几种生物修复技术包括生物学,生物渗以,生物吸附,生物精彩,生物还原等等。生物提升增强了自然生物降解过程;生物含量涉及金属硫化物的氧化;生物吸附着重于金属吸附在生物质表面上。生物精制是金属离子向固体沉淀的转化。生物还原是将金属离子还原为毒性较小或可溶性结构。尽管使用极端微生物进行了生物修复的所有好处,但它仍然存在缺点和挑战,包括复杂的维护,道德问题和有限的可伸缩性,这需要持续的研究以优化其在环境污染治疗中的应用。需要进一步的研究来集中精力理解其生态学,基因表达和代谢,以确保全球范围内的可持续性和有效性。
1项目概述1 1.1 MEC-U设施及其任务简介。。。。。。。。。。。。。。。。。。2 1.2 LCLS/MEC背景,科学影响和计划。。。。。。。。。。。。。。。。。3 1.2.1 LCLS科学影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.2 MEC科学影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.3国际竞赛。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.4 DOE响应。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.2.5 MEC-U对HED等离子科学的影响。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.3 MEC-U科学目标和能力。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 1.3.1 FLAGSIP实验。 。 。 。 。 。 。 。 。 。 。 。 。4 1.2.4 DOE响应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.2.5 MEC-U对HED等离子科学的影响。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1.3 MEC-U科学目标和能力。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 1.3.1 FLAGSIP实验。 。 。 。 。 。 。 。 。 。 。 。 。5 1.2.5 MEC-U对HED等离子科学的影响。。。。。。。。。。。。。。。。。。。5 1.3 MEC-U科学目标和能力。。。。。。。。。。。。。。。。。。。。。。。6 1.3.1 FLAGSIP实验。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 1.4设施操作要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.5 MEC-U项目描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.1设施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.2实验设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.6项目范围摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.7项目持续时间和预算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.8管理和合作方法。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.9风险管理策略。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.10设计替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.11设施位置替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.11.1设计利用远面实验厅的设计。。。。。。。。。。。。。。。。。21 1.11.2独立洞穴的设计。。。。。。。。。。。。。。。。。。。。。。。21 1.12激光系统替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.12.1短脉冲激光替代品。。。。。。。。。。。。。。。。。。。。。。。。。。22 1.12.2长脉冲激光替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。23 1.13目标腔室替代方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.13.1 TCX设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.13.2 TCO设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 1.14未来的计划和任务未来未来。。。。。。。。。。。。。。。。。。。。。。25 1.15当前设计明确允许的结构选项。。。。。。。。。。。。。26 1.15.1双 - 佩塔瓦特升级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.15.2多KJ长脉冲激光升级。。。。。。。。。。。。。。。。。。。。。。。26 1.15.3长脉冲激光器的第三个谐波。。。。。。。。。。。。。。。。。。。。26 1.15.4下游X射线目标室。。。。。。。。。。。。。。。。。。。。。。。26 1.15.5 TCX中的动态3-D断层扫描。。。。。。。。。。。。。。。。。。。。。。27 1.16其他自一致的升级选项。。。。。。。。。。。。。。。。。。。。。。。。。27 1.16.1频率加倍Petawatt梁。。。。。。。。。。。。。。。。。。。。。27
可能的解决方案是将两者结合起来:一种分析方法(WWA方法),以及在贝叶斯方法中使用整个分布。显示整个分布也支持一个更容易的交流:而不是宽范围表明内部的每个概率比同样可能,而是在大多数引导结果所在的位置都可以看到。
在 FCDO 研究的支持下,FSD Africa 开发了 Cavex(碳价值交换)等高风险、高影响力项目,从最初的想法到可扩展的平台。Cavex 有可能像 15 年前 M-PESA 引领全球数字金融浪潮时移动货币那样扩大规模。Cavex 将把英国等国家希望抵消碳排放的公司与非洲希望从明火转向清洁能源炉灶的创新者和农村家庭联系起来。炉灶中的嵌入式芯片使审计人员能够确认炉灶正在使用并且节省了碳排放。然后,M-PESA 等移动货币平台可以让数万个家庭直接受益于这些碳信用额,通常每年价值 40 美元。FSD 非洲团队的目标是到 2030 年向非洲各地的许多组织和个人提供 5 亿美元的气候融资,并通过 Cavex 支持消除或避免 1 亿多吨的碳补偿。
为应对这些挑战,国际科学界在过去二十年中迈出了重要一步。一方面,世界气候研究计划 (WCRP) 在新生的地球系统建模核心项目 (https://www.wcrp-climate.org/esmo-overview) 内制定了有关近期气候预测的具体工作计划,同时开展了解释和预测地球系统变化的灯塔活动 (EPESC,Findell 等人,2021 年,参见 https://www.wcrp-climate.org/epesc)。这些焦点小组旨在开发亚季节到年代际变化和可预测性的数值实验,重点是改进预测,并通过强大的基于过程的检测和归因,定量了解地球系统正在发生的具体变化。
vii Martin, W., & Russell, MJ (2007). 论碱性热液喷口的生物化学起源。《皇家学会哲学学报 B:生物科学》,362(1486),1887-1926。viii Rampelotto, PH (2013). 极端微生物与极端环境。《生命》,3(3),482-485。
高温和恶劣环境下的制造。• 合金包括 GRCop-42、GRCop-84、NASA HR-1、GRX-810、耐火材料基 (C103)。• 制造所需组件和材料性能的 AM 工艺已经成熟。• NASA 已对这些合金进行了超过 50,000 秒和 1400 次热火测试。• 商业空间正在积极使用这些合金进行开发和飞行灌注。• 数据和属性可供商业和政府合作伙伴使用。
摘要自2000年代后期以来,国家航空航天管理局(NASA)参与了用于空间应用的金属添加剂制造(AM)的开发和成熟。通过材料表征和测试,标准开发,组成的制造以及对推进开发和飞行应用的注入,重点介绍了对AM过程的理解。除了机械和热物理测试外,NASA成熟的常用航空合金(镍,铜,不锈钢和钢,铝和基于钛的镍,铝和基于钛的钢),除了机械和热物理测试外,还通过详细的AM过程和热处理表征。尽管这些合金在许多推进应用中都被积极使用,但需要使用集成计算材料工程(ICME)(ICME)和高性能应用程序的过程开发进行持续的AM优化合金。针对的应用是液体火箭发动机;先进的推进系统;和高热通量,高压和/或使用可以降解合金(例如氢)的推进剂的空间推进。本文使用激光粉末床融合(L-PBF)和激光粉末定向能量沉积(LP-DED)工艺强调了更常见的AM合金的表征和物理特性。此外,本文讨论了一些正在进行的新型合金开发和使用AM用于这些恶劣环境中的新型合金开发和成熟,例如GRCOP-42,GRCOP-84,NASA HR-1,GRX-810和C-103。这些过程的结果表明,AM可以实现使用ICME优化合金的快速开发和持续的努力,从而产生更高的性能。这些合金进行了建模,基本冶金评估,热处理研究,详细的微观结构表征和机械测试运动。这与直接应用特定的组件制造和热火测试相结合,通过高占用周期测试使技术准备水平(TRL)的提高能够提高。此处介绍了这些新型AM启用合金和正在加工的开发,包括冶金和机械性能研究。还讨论了这些合金的平行组件开发以及热火测试和未来发展的最新进步。Keywords : Additive Manufacturing, Propulsion, Rockets, Alloy Development, GRCop-42, GRCop-84, Refractory, GRX-810, NASA HR-1, L-PBF, LP-DED, DED, Laser Powder Bed Fusion, Laser Powder Directed Energy Deposition Acronyms/Abbreviations AM Additive Manufacturing (AM), Carbide Dispersion Strengthened (CDS), Directed能量沉积(DED),家用或异物碎片(DOD或FOD),氢环境封闭(HEE),氢含水剂指数(HEI),热等速度压迫(HIP),集成计算材料工程(ICME),低循环疲劳(LCF),LCF),Laser粉末床融合(LPBF),Laser fordect(Laseredect),Laser dive-dive-dive-dirotect(Laser dirotect)(LASEREDEDED)
气候变化正在迅速改变陆地生态系统的增长条件,并具有广泛的证据表明,干旱和延长的干旱和热浪。有大量证据表明这些极端事件重塑了生态系统。了解森林如何反应和从这些非生物压力源中恢复至关重要,从而为在变暖世界中的树种的韧性提供了至关重要的见解。随着条件变得更加极端,对树木的反应有了改进的理解,对于准确模拟碳和水周期的未来变化并预测物种分布的转移至关重要。该项目将集中于树木的压力恢复动力学。学生将对树木从干旱和热压力中恢复过来产生新的,过程为导向的见解。通过整合诸如涡流协方差测量,实验数据和卫星数据之类的观察结果与新型模型的假设 - 检查诸如储存碳水化合物和水力损害的遗产之类的因素 - 该博士学位将提高我们预测森林对温度,湿度,湿度和水可用性的森林反应的能力。该项目将着重于开发Jules(https://jules.jchmr.org/),这是英国在大都会办公室统一模型中的社区地面模型。案件和协作项目合作伙伴大都会办公室将在埃克塞特(Exeter)的同时为学生提供办公空间,并为学生提供支持。他们将在学习如何在整个博士学位上使用和开发Jules模型时得到支持。他们还将提供有关使用Jules建模的研究监督和指南,尤其是与温度响应有关。