本文中表达的任何观点都是作者的意见,而不是Iza的意见。本系列发表的研究可能包括对政策的看法,但IZA没有任何机构政策立场。IZA研究网络致力于研究完整性的IZA指导原则。IZA劳动经济学研究所是一家独立的经济研究所,在劳动经济学领域进行研究,并就劳动力市场问题提供基于证据的政策建议。在德意志邮政基金会的支持下,伊扎(Iza)拥有世界上最大的经济学家网络,其研究旨在为我们这个时代的全球劳动力市场挑战提供答案。我们的主要目标是在学术研究,决策者和社会之间建造桥梁。IZA讨论论文通常代表初步工作,并被散发以鼓励讨论。引用这种论文应解释其临时特征。可以直接从作者那里获得修订版。
1广州大学,广州大学建筑与城市规划学院,中国510006; chenzijinggzhu@outlook.com(Z.C. ); haojuny1202@outlook.com(H.Y. ); lijianjun@gzhu.edu.cn(J.L. ); chengliang.fan@gzhu.edu.cn(c.f.) 2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C. ); chewy0917@outlook.com(q.r。) 3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)1广州大学,广州大学建筑与城市规划学院,中国510006; chenzijinggzhu@outlook.com(Z.C.); haojuny1202@outlook.com(H.Y.); lijianjun@gzhu.edu.cn(J.L.); chengliang.fan@gzhu.edu.cn(c.f.)2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C. ); chewy0917@outlook.com(q.r。) 3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)2广州大学的建筑设计与研究所,中国510405; ikeccch@outlook.com(B.C.); chewy0917@outlook.com(q.r。)3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W. ); dqzhang3377@outlook.com(d.z。)3广东污染过程和控制的广东省级主要实验室,环境科学与工程学院,广东大学石化技术大学,摩梅山525000,中国4号国家主要的实验室,土木工程和运输学院主要实验室。 mingl6371@outlook.com 5汤吉大学设计与创新学院,上海200092,中国; Zhoushiqi1965@outlook.com 6 Bartlett建筑学院,伦敦大学学院,伦敦WC1N 1EH,英国; ucbqy55@ucl.ac.uk 7新加坡南南技术大学的民用与环境工程学院,新加坡639798; ctansk@ntu.edu.sg *通信:landwangmo@outlook.com(M.W.); dqzhang3377@outlook.com(d.z。)
本文回顾了有关极端天气和气候事件造成的灾难的经济影响的文献,以吸引社会如何更好地管理这些风险的课程。虽然证据表明,更富有,统治较高的社会遭受的苦难较小,并且从极端气候中恢复得更快地恢复表明适应,知识差距仍然存在,并且对特定适应性行动的效率知之甚少。我回顾了各种“否或低”遗憾的适应选项,这些适应选项是在不确定性的气候变化影响很高时建议的。我讨论了政府如何通过直接提供公共物品来管理灾害风险或促进私人代理商的适应反应,并强调政策和协调失败的政治经济学,从而在适应中发挥重要作用。
我们介绍了德克萨斯大学 - 城市研究的全球建筑高度(UT -Globus),该数据集可为全球1200多个城市或地区提供建筑高度和城市顶篷参数(UCP)。ut-Globus将开源太空载速度(ICETAT-2和GEDI)和粗分辨率的城市冠层高度数据与机器学习模型结合在一起,以估算建筑物级别的信息。使用来自美国六个城市的LiDAR数据进行验证,显示ut-Globus衍生的建筑高度的均方根误差(RMSE)为9.1米。验证1公里2个网格电池内的平均建筑高度,包括来自汉堡和悉尼的数据,导致RMSE为7.8米。与现有的基于餐桌的本地气候区域方法相比,在城市天气研究和预测(WRF城市)模型中,在城市内空气温度代表性中的UCP显着改善(RMSE为55%)。此外,我们演示了数据集使用WRF城市模拟降温策略并建立能源消耗的数据集,并在芝加哥,伊利诺伊州和德克萨斯州的奥斯汀进行了测试案例。使用太阳能和长波环境辐照度几何形状(SOLWEIG)模型(结合UT-Globus和LiDAR来源的建筑高度)的街道尺度平均辐射温度模拟证实了该数据集在MD Baltimore,MD(白天RMSE = 2.85°C)中建模数据集的有效性。因此,UT-Globus可用于建模具有重大社会经济和生物气象风险的城市危害,从而实现更细长的城市气候模拟,并由于缺乏建筑信息而克服了先前的限制。
已描述了20,000多种原核生物(少于估计的地球微生物物种数量的1%)。但是,居住在极端环境的绝大多数微生物仍然没有文化,该群体被称为“微生物暗物质”。关于这些未经置换的极端粒子的生态功能和生物技术潜力,几乎不知所知,因此代表了庞大的未开发和未表征的生物学资源。微生物培养方法的进步是对这些微生物在塑造环境中作用的详细和全面表征的关键,最终,对于它们的生物技术剥削,例如极端细胞衍生的生物产生(极端衍生的生物生物)(极端生物学,次生代谢物,Crispr cas Systems和Pigments,等等),以及其他空间探索。由于极端的培养和镀金条件所面临的挑战,需要采取其他努力来增强可培养的多样性。在这篇综述中,我们总结了用于恢复极端环境微生物多样性的方法和技术,同时讨论了与每种方法相关的优势和缺点。此外,这篇综述还描述了以其未知的基因,代谢和生态作用来检索新型分类单元的替代培养策略,其最终目的是提高基于生物的生物产品的产量。因此,本综述总结了极端环境微生物组的隐藏多样性的策略,并讨论了对微生物暗物质的未来研究的方向及其在生物技术和天体生物学中的潜在应用。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
2019年,https://brokingdefense.com/2019/10/ethical-ai-for-war-defense-innovation-board-says-it-can-be-done/,
气候引起的热温极端的不断升级威胁构成了全球可持续性挑战,影响了生态系统和公共卫生。虽然已知叶子面积指数的增强(LAI;又名地球绿色)可以冷却全球平均空气温度,但知识差距在缓解效果中对热温极端的影响存在,尤其是在过去三十年中的Rising Co 2下。我们的研究结合了耦合的土地大气候气候模型(IPSL -CM)模拟与全球观察结果,表明地球绿色已降低了炎热的天数频率指数(TX90P)和温暖的夜晚频率指数(TN90P),以-0.26±0.10天数量降低了-10天和-0.11 and -0.11 and -0.11及以-11±0.11及5.11;全球。然而,上升的CO 2水平部分降低了这些缓解效果,没有这些效果,地球绿化可能会抵消TX90P的7.7%,而TN90P的10.0%。我们的发现阐明了Earth Greening减轻极端温度的潜力,为更具弹性和可持续的气候适应和缓解提供了一种途径。关键字:叶区索引;极端气候;蒸散;地球系统模型;缓解气候变化;升高的CO 2浓度
美国陆军工程兵团 (USACE) 与旧金山港 (POSF) 合作,领导旧金山海滨沿海洪水研究 (SFWCFS),以评估旧金山市和县 (CCSF) 海湾沿岸现有和未来的沿海洪水灾害。为了支持这项研究,USACE 选择了第二代沿海风险模型 (G2CRM) 来评估现有和未来沿海洪水灾害的潜在损失及其各自的经济成本。本报告介绍了为 G2CRM 开发沿海风暴输入的技术工作,重点是描述 CCSF 海湾海岸线沿岸复杂的旧金山湾 (Bay) 沿海灾害,并开发适当代表这些灾害的沿海风暴数据库。