气候引起的热温极端的不断升级威胁构成了全球可持续性挑战,影响了生态系统和公共卫生。虽然已知叶子面积指数的增强(LAI;又名地球绿色)可以冷却全球平均空气温度,但知识差距在缓解效果中对热温极端的影响存在,尤其是在过去三十年中的Rising Co 2下。我们的研究结合了耦合的土地大气候气候模型(IPSL -CM)模拟与全球观察结果,表明地球绿色已降低了炎热的天数频率指数(TX90P)和温暖的夜晚频率指数(TN90P),以-0.26±0.10天数量降低了-10天和-0.11 and -0.11 and -0.11及以-11±0.11及5.11;全球。然而,上升的CO 2水平部分降低了这些缓解效果,没有这些效果,地球绿化可能会抵消TX90P的7.7%,而TN90P的10.0%。我们的发现阐明了Earth Greening减轻极端温度的潜力,为更具弹性和可持续的气候适应和缓解提供了一种途径。关键字:叶区索引;极端气候;蒸散;地球系统模型;缓解气候变化;升高的CO 2浓度
抽象背景极端温度是与气候变化相关的最严重的环境健康危害之一。人寿保险公司在暴露于死亡率风险的情况下必须了解气候变化对保单持有人死亡率经历的潜在物质影响。其他具有死亡率和寿命风险的金融机构也可能受到极端温度频率或严重程度的变化的影响。然而,迄今为止,有限的证据存在于气候变化危害之间的关系,例如热压力和南非被保险人生的死亡率,以及其他发展中国家的死亡率。目的,我们研究了南非保险人的过度死亡与养老金领取者样本的过度死亡与高温和温度波动之间是否存在任何显着关系,以及在人寿保险公司的葬礼书中涵盖的生活样本。方法论,我们从与南非保险人的生活有关的两个数据来源收集了全因死亡率的每日时间序列(从2012年1月1日至2019年1月1日的退休人员数据集,以及2021年6月1日至2024年7月31日至2024年7月31日的葬礼保险数据集),以及同一时期的南非所有零件的每小时温度,从同一和最高的每日限制了我们的最高温度,我们的每日温度最高。在所有年龄段中计算了相对于其平均每月水平(“死亡率残差”)相对于其平均每月水平(“死亡率残差”)的个体标准化偏差。类似标准化
植物不断受到各种环境胁迫,这些胁迫对其生长、发育和生产力产生重大影响。其中,干旱、盐度和极端温度是最有害的。了解植物抗逆性的潜在机制对于制定提高作物抗逆性和确保粮食安全的战略至关重要。本综述全面探讨了植物对干旱、盐度和极端温度的生理、生化和分子耐受机制。我们讨论了胁迫感知和信号传导、渗透调节、抗氧化防御、激素调节以及遗传和表观遗传修饰的作用。此外,我们还重点介绍了旨在提高作物抗逆性的育种和生物技术方法的最新进展。
CBO计算每个ZCTA的平均年度冷却度日(CDD),并估计每个温度箱中CDD中的单独线性样条。年度CDD捕获每日温度超过65华氏度的频率和数量。
配件(提供的用户)SMART1524ET-将电池连接到UPS推荐的电池电缆测量值为6 AWG,最大建议长度为6.56 ft。 / 2 m。 SMART1548ET-将电池连接到UPS推荐的电池电缆仪为8 AWG,最大建议长度为6.56 ft。 / 2 m。 SMART1524ET-需要24V 150A额定的保险丝银行。建议安装18英寸的DC保险丝。/ 0.45 m,电池系统的正连接线向UPS。SMART1548ET-需要48V 70A额定保险丝银行。建议安装18英寸的DC保险丝。/ 0.45 m,电池系统的正连接线向UPS。
使用扩展的Kalman滤波器(EKF)来估计锂离子电池(LIBS)的电荷状态(SOC),系统的噪声协方差矩阵和能量收集器的观察声音大多是随机给出的,这使得无法优化噪声问题。这会导致SOC估计的准确性和稳定性较低。为解决这些问题,提出了一种基于长期短期记忆 - 自适应的无知的卡尔曼滤波器(LSTM – AUKF)融合的方法来提高估计Libs Soc的准确性和稳定性。首先,从混合脉冲功率表征(HPPC)实验数据中鉴定出Thevenin模型的离线参数。然后,为电源LIB构建了SOC估计窗口的LSTM结构,并且电池SOC训练网络是通过电池电流,电压,温度和历史数据实时预测的。最后,设计了估计权力液体SOC的AUKF算法,然后提出了融合策略。实验验证表明,用于估计研究窗口中LSTM -AUKF混合动力锂电池的均方根平方误差(RMSE),最大(最大)和平均绝对误差(MAE)分别为1.13、1.74和0.39%。与窗口LSTM网络相比,融合算法提高了SOC估计功率LIB的准确性和稳定性。
摘要:小麦是世界上最重要的主食作物之一,其遗传改良对于满足不断增长的人口的全球需求至关重要。然而,气候变化加剧的环境压力和耕地面积的不断恶化使得满足这一需求变得非常困难。鉴于此,小麦对非生物胁迫的耐受性已成为遗传改良的一个关键目标,这是一种在不增加耕地面积的情况下确保高产的有效策略。与现代农业相关的遗传侵蚀,即高产小麦品种是高选择压力的产物,这降低了整体遗传多样性,包括可能有利于适应不利环境条件的基因的等位基因多样性。这使得传统育种成为一种效率较低或速度较慢的产生新抗逆小麦品种的方法。无论是挖掘不适应的大型种质库的多样性,还是产生新的多样性,都是主流方法。基因工程的出现为创造新的植物变异提供了可能性,其应用为传统育种提供了强有力的补充。转基因和基因组编辑等基因工程策略为改善栽培品种具有重要农学意义的环境耐受性提供了机会。至于小麦,全球有数个实验室已成功培育出具有增强的非生物胁迫耐受性的转基因小麦品系,而且最近,用于小麦基因组内靶向变异的 CRISPR/Cas9 工具也取得了显著改进。鉴于此,本综述旨在提供基因工程应用的成功案例,以改善小麦对干旱、盐分和极端温度的适应性,这些是最常见和最严重的事件,导致全球小麦产量损失最大。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
摘要 - 紧凑的功率电子电路和开关设备的较高操作温度要求对寄生组件在这些设备中的影响进行分析和验证。通过文献研究了氮化壳效应晶体管(GAN-FET)中发现的漂移机制,并与测量结果有关。极端温度条件下的测量值远远超出了制造商推荐的操作范围。研究了GAN-FET的静态和动态操作中对寄生元件的影响,并以半桥电路的示例与开关模式功率电子电线中的设备损耗有关。在本文中,进行了对温度对电阻,泄漏电流和反向传导的影响的静态操作研究。GAN-FET两种状态之间的动态操作也被解决,并且与开关导管损失的潜在影响有关。使用曲线示踪剂构建了一个热室,以精确测量设备中寄生元件的影响。发现,r ds的增量,i dss,i gss和v sd可以通过文献来证明,并通过测量来验证。增量c oss和降低V gs Th时,将设备暴露于极端温度时。这两个参数对在时间至关重要的高温下设计电路方面给人带来了真正的挑战。尽管温度调节,但发现所研究的GAN-FET具有在极端温度稳定条件下使用的潜力。
范围NASA Glenn Research Center一直在典型苛刻的空间环境中,特别是极端的温度暴露和广泛的热循环,对商业货架(COTS)电气,电子和机电(EEE)部分进行了可靠性研究和性能评估。在NASA电子零件和包装(NEPP)计划的支持下,这些努力已经跨越了几年。有时,NASA开发的零件和材料的性能评估也与其他NASA中心合作执行,包括GSFC,LARC,MSFC和JPL。测试文章包括半导体开关,电容器,振荡器,电压参考,灵活的打印电路板,传感器和DC/DC转换器,仅举几例。虽然此摘要对选定零件获得的测试结果提供了概述,但这些和其他COTS零件的详细发现发布在NASA NEPP网站上。实验研究主要集中在设备/电路暴露于高温和低温(有时超出其指定限制之外),热循环以及在极端温度极端的重新启动能力,以建立在功能上的基线,并确定这些设备在太空勘探任务中的适用性。这些发现被传播到任务计划人员和电路设计师,以便可以正确选择电子零件,并确定风险评估和缓解技术以在太空任务中使用此类设备。极端温度环境电路和未来NASA空间任务的系统涉及航天器,深空探头,行星轨道和着陆器以及在极端温度环境中需要可靠和高效的操作的表面探索仪器。例如,发射的行星际探针探索土星的环将经历大约-138C的温度。商业级电子零件通常指定为在0°C和70°C之间运行,指定工业级的半导体设备指定在-40°C和85°C之间运行,并指定在-55°C和125°C之间运行的军事级。由于严格的温度信封,用于空间使用的零件的评级不同,因此需要在可用EEE零件的范围内运行。