高吞吐量测序技术和色度状态图表明,真核细胞产生了许多非编码转录本1-3。任意定义为200多个不属于任何其他明确定义的非编码RNA的核苷酸的转录本,例如核糖体RNA。通过各种机制,LNCRNA与各种细胞过程有关,包括转录调控,分化,细胞重编程和许多其他细胞(在其他地方4-6中综述)。具有不同水平的证据,LNCRNA也与各种人类疾病有关7 - 9。lncRNA由RNA聚合酶II(POL II)转录,它们的生物发生与mRNA相似,因为它们被封闭和聚腺苷酸化。lncRNA通常也被剪接,尽管它们的外显子数和剪接效率平均低于mRNAS 10-13的外显子数。然而,由于LNCRNA主要由排除标准定义,因此注释为lncRNA的基因包含许多不同的子基团,体现了多样化的结构性和功能特征。将LNCRNA分配给不同的官能团对于识别常见的原理至关重要,因此在开始阐明其角色时,构成了关键步骤。这一步骤仍然非常挑战,在过去十年的LNCRNA研究中取得了有限的进展。一种类型的LNCRNA分类基于LNCRNA相对于其转录位点功能的位置。他们的trans-作用LNCRNA被转录,处理,然后撤离其转录部位,以在其他地方(类似于mRNA)发挥其功能。
目录第1章。一般介绍和论文概述7急性共同199章。伊马替尼的药代动力学和药效学最佳21药物从癌症中重新利用到covid-19更多氧气(P4O2)的精确医学 - 研究的设计和53个长covid-19扩展期的首先结果。从前旋转到杂化后的药物治疗:长期相互兴趣症状的纵向89趋势和预测指标。长期共同的OMICS景观 - 一项全面的115系统审查,以推动生物标志物,目标和药物发现第6章。长期共同患者的全血记录组显示153次与肺功能和免疫反应的关联。迈向精确医学:炎症性鼻上皮177转录组第8章。鼻上皮中的障碍功能障碍在长期共同的第9章中导致持续性213炎症。摘要245第10章一般讨论:PHD论文对长期251 COVID和其他病毒后条件的研究含义。nederlandse samenvatting 277附录283 vitae Phd Phd投资组合列表出版物撰写作者dankwoord/deskledgments
1 E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA 2 SLAC National Accelerator Laboratory, Menlo Park, CA 94025 3 Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 4 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki,日本Tsukuba 305-0044†这些作者同样为这项工作做出了贡献。*电子邮件:leoyu@stanford.edu **电子邮件:tony.heinz@stanford.edu van-der-waals(vdw)材料已经通过层组装开辟了许多通过层组装发现的途径,因为表现出电气可调节的亮度亮度,浓度和exciten contensect,cortensect,contensation and Exciten cortensation and ExciteN,contensation and ExciteNtion and ExciteNtion and ExciteN,并表现出。将层间激子扩展到更多的VDW层,因此提出了有关激子内部连贯性以及在多个接口处Moiré超级峰值之间的耦合的基本问题。在这里,通过组装成角度对准的WSE 2 /WS 2 /WSE 2杂体我们证明了四极激体的出现。我们通过从两个外层之间的相干孔隧道(在外部电场下的可调静态偶极矩)之间的相干孔隧穿来证实了激子的四极性性质,并降低了激子 - 外激体相互作用。在较高的激子密度下,我们还看到了相反对齐的偶极激子的相位标志,这与被诱人的偶性相互作用驱动的交错偶极相一致。我们的演示为发现三个VDW层及以后的新兴激子订购铺平了道路。
2SC3420 TIP41B 2SC3421 TIP47 2SC3657 BU508A 2SC3783 BU508A 2SC3795 BUL138 2SC3832 BUL128 2SC3868 BULT118 2SC3886 BUH1015HI 2SC3886A BUH1015HI 2SC3892 THD200FI 或 THD215HI 2SC3892A THD200FI 或 THD215HI 2SC3970A BULT118 2SC3996 BUH1215 2SC3997 BUH1215 2SC4051 BUL128 2SC4053 BUL138 2SC4054 BUL138 2SC4055 BUL57 2SC4106 BUL128 2SC4107 BUL57 2SC4123 BUH615D 2SC4229A BUH1215 2SC4233 BUL216 2SC4235 2N6059 2SC4236 2N6059 2SC4242 BUL138 2SC4288A BUH1215 2SC4290A BUH1215 2SC4533 BULT118 2SC4744 BUH615D 2SC4747 BUH1215 2SC4757 THD219HI 2SC4759 BUH1015HI 2SC4762 BUH615D 2SC4769 BUH615D 2SC4770 THD200FI 或THD215HI 2SC4774 BUH1015HI 2SC4916 THD218DHI 2SC4923 BUH1015HI 2SC4924 BUH1015HI 2SC4927 THD200FI 或 THD215HI 2SC4977 BUL57 2SC5002 THD200FI 或 THD215HI 2SC5021 BUL128 2SC5022 BUH2M20AP 2SC5023 BUL138
长读测序技术通过生成足够长的读长来跨越和解析基因组的复杂或重复区域,提高了基因组组装的连续性,从而提高了质量。一些研究小组已经展示了长读长在检测数千个基因组和表观基因组特征方面的强大功能,而这些特征以前被短读长测序方法遗漏了。虽然这些研究表明了长读长如何帮助解析基因组的重复和复杂区域,但它们也强调了使用这些平台准确解析大量群体中的变异等位基因所需的通量和覆盖率要求。在撰写本文时,在最高通量短读长仪器上,全基因组长读长测序比短读长测序更昂贵;因此,实现足够的覆盖率以检测异质样本中的低频变异(如体细胞变异)仍然具有挑战性。另一方面,靶向测序提供了在异质群体中检测这些低频变异所需的深度。在这里,我们回顾了当前使用和最近开发的靶向测序策略,这些策略利用现有的长读技术来提高我们在各种生物背景下观察核酸的分辨率。
45-8 ENERGY 是一家法国公司,致力于勘探和生产对生态和能源转型至关重要的战略工业气体,例如氦气和天然氢。其方法侧重于短供应链,从而实现针对就近消费的人类规模的本地项目。这在欧洲是独一无二的!该行业的兴起得益于开创性的创新地质方法,该方法得到了与学术和工业合作伙伴合作进行的强大技术创新的支持。45-8 ENERGY 的活动最近得到了法国生态转型部的认可,该部将第一个项目命名为“绿色技术创新”,从而证明了这种方法对生态转型挑战的积极影响。它的几个研发项目也被 MATERALIA 和 AVENIA 竞争集群标记,证明了它们的技术相关性。
我们研究了最近定义的凸线结构的λ-聚型,并应用于通过采样的魔术状态对量子计算的经典模拟。对于每个数字n数字n,都有一个这样的多层。我们建立了{λN,n∈N}族的两个属性,即(i)所有n> m的极端点(顶点)Aα∈λM可用于在λN中构造顶点。(ii)对于通过此映射获得的顶点,具有魔术状态的量子计算的经典模拟可以根据i映射Aα有效地降低为经典模拟。此外,我们描述了λ2中的一个新的顶点,该顶点在已知的分类之外。虽然经典模拟的硬度对于λN的大多数极端点仍然是一个空的问题,但上述结果将量子计算的有效经典模拟扩展到了当前已知的范围之外。