鉴于该项目启动的背景(1997 年),改善可用于模拟地下结构事故影响的资源似乎很重要,主要原因如下: • 能够更好地预测通风设备以及各种安全部件的运行和尺寸非常重要,这样才有可能避免事故相关现象的影响 - 这至少部分地决定了结构的成本,并且能够定义要采取的行动以限制事故的影响, • 用于预测火灾和意外气体排放影响的技术仅适用于地下网络和单管隧道,基于简化的极限条件,而这些极限条件通常很难代表现实, • 复杂结构(地下交通网络、主要铁路或公路隧道、地下建筑或储存设施……)中事故的影响几乎不可能同时以必要的精度预测结构的整体行为和任何意外的局部影响。
鉴于该项目启动的背景(1997 年),改善可用于模拟地下结构中事故影响的资源似乎非常重要,主要原因如下:• 能够更好地预测通风设备及各种安全部件的运行和尺寸非常重要,这样才有可能避免事故相关现象的影响 - 这至少部分地决定了结构的成本,并且能够定义为限制事故影响而需采取的行动,• 用于预测火灾和意外气体排放影响的技术仅适用于地下网络和单管隧道,基于简化的极限条件,而这些条件通常很难代表现实,• 复杂结构(地下交通网络、主要铁路或公路隧道、地下建筑或储存设施……)中事故的影响几乎不可能同时以必要的精度预测结构的整体行为和任何意外的局部影响。
鉴于该项目启动的背景(1997 年),改善可用于模拟地下结构中事故影响的资源似乎非常重要,主要原因如下:• 能够更好地预测通风设备及各种安全部件的运行和尺寸非常重要,这样才有可能避免事故相关现象的影响 - 这至少部分地决定了结构的成本,并且能够定义为限制事故影响而需采取的行动,• 用于预测火灾和意外气体排放影响的技术仅适用于地下网络和单管隧道,基于简化的极限条件,而这些条件通常很难代表现实,• 复杂结构(地下交通网络、主要铁路或公路隧道、地下建筑或储存设施……)中事故的影响几乎不可能同时以必要的精度预测结构的整体行为和任何意外的局部影响。
鉴于该项目启动的背景(1997 年),改善可用于模拟地下结构中事故影响的资源似乎非常重要,主要原因如下:• 能够更好地预测通风设备及各种安全部件的运行和尺寸非常重要,这样才有可能避免事故相关现象的影响 - 这至少部分地决定了结构的成本,并且能够定义为限制事故影响而需采取的行动,• 用于预测火灾和意外气体排放影响的技术仅适用于地下网络和单管隧道,基于简化的极限条件,而这些条件通常很难代表现实,• 复杂结构(地下交通网络、主要铁路或公路隧道、地下建筑或储存设施……)中事故的影响几乎不可能同时以必要的精度预测结构的整体行为和任何意外的局部影响。
摘要。在本研究中,研究了磁流体力学 Carreau 纳米流体在加热旋转板上旋转微生物的精确近似。板以恒定均匀的倾斜速度移动。通过使用某些物理假设作为具有极限条件的不完全微分条件来获得控制条件。利用束相似性变换将这些非线性条件转换为耦合的标准微分条件。使用最佳同伦研究方法最佳同伦渐近法 (OHAM) 来获取流场因素的图形结果和均匀性质。研究并阐明了旋转微生物的速度、温度、固定和密度的图形表示。发现无量纲微生物的固定随着微生物的生物对流 Lewis 数和浓度差异变量而增加。还发现,由于吸引力和 Carreau 流体边界,无量纲速度会降低。给出了邻近运动边界(如皮肤摩擦系数、努塞尔特数、舍伍德数和运动微生物的厚度数)的轮廓图和数学结果。
我们提出了一种规范的计算理论,说明神经回路如何在动态环境中支持视觉引导的目标导向动作。该模型建立在主动推理的基础上,通过动态最小化广义预测误差来推断感知和运动控制信号。后顶叶皮层 (PPC) 被认为可以保持对环境状态的不断更新的期望或信念,并通过灵活的意图操纵它们,参与动态生成目标导向动作。反过来,背侧视觉流 (DVS) 和本体感受通路实现了生成模型,将高级信念转化为感官级预测,以推断目标、姿势和运动命令。在目标到达任务中测试了一个包含视觉和本体感受传感器以及驱动上肢的概念验证代理。代理在各种条件下都表现正确,包括静态和动态目标、不同的感官反馈、感官精度、意图增益和运动策略;极限条件也是个性化的。因此,由动态和灵活意图驱动的主动推理可以支持不断变化的环境中的目标导向行为,而 PPC 则被认为是其核心意图机制的载体。更广泛地说,这项研究为端到端环境中的目标导向行为研究提供了规范基础,并进一步推进了主动生物系统的机制理论。
伊丽莎白女王号航空母舰是英国皇家海军两艘新一代航空母舰中的第一艘。伊丽莎白女王级航空母舰的主要作用是提供固定翼航母打击能力,其次要作用是使用全系列英国前线旋翼机支持两栖作战。为了推导支持这种能力的舰载直升机操作极限 (SHOL),空中测试和评估中心 (ATEC) 采用了实用的首航飞行试验 (FOCFT) 和分析方法。虽然本文概述了 SHOL 推导过程,但重点关注 FOCFT 的实施,由于舰船的大小和复杂性以及舰船计划的有限时间,FOCFT 带来了重大挑战,需要新的解决方案。Chinook HC Mk 5 和 Merlin HM Mk 2 被选为试验飞机,因为它们都与两栖攻击角色高度相关,并且之前曾用于支持对其他英国类型的分析许可。通常在 SHOL 测试期间,可能会花费大量时间来定位船舶以获得理想的测试气象条件,并进行机动以产生特定的相对风。此外,测试飞机可能会花费一半以上的时间在航线上。只要有可能,就会同时进行一架 Merlin 和一架 Chinook 的试飞,以最大限度地发挥每种大气和相对风条件的输出,每架飞机都在一个航线和进近中进行多次着陆。协调和排序飞机和测试条件是一项重大挑战,特别是在达到极限条件时。开发并实施了自动分析技术,以便快速评估每架飞机和操作点的着陆数据,为飞行之间的测试计划提供信息。在短短两周内,总共进行了 987 次登陆演习,包括在海况 5 级的条件下,在白天和夜间对 Merlin 和 Chinook 的最大总重量进行操作。然后利用分析方法根据 FOCFT 数据为 Apache 和 Wildcat 提供许可,并为非航空母舰 (HOSTACS) 的直升机操作提供建议。