连接表皮溶解Bullosa(JEB)是一种令人衰弱的遗传性皮肤疾病,由编码Lam-Inin-332,XVII型胶原蛋白(C17)的基因突变引起,并综合素6 B 4,维持模糊和表皮之间的稳定性。我们签署了患者特异性的cas9-核酸酶和基于 - 基因酶的靶向策略,用于在Col17a1的外显子52中重新构建与缺乏全长C17表达相关的共同纯合子deportion。随后对蛋白质的重新修复,糖节组成以及治疗后的DNA和mRNA结局的发散表明,基于成对的基于成对的COL17A1编辑的吉利效率,安全性,安全性和精度。几乎46%的原发性jeb角细胞表达了C17。重新构架Col17a1 tran-文字主要具有25和37-nt的缺失,占所有编辑的> 42%,编码C17蛋白质变体,可准确地定位于细胞膜。此外,与未处理的JEB细胞相比,经过校正的细胞显示出精确的细胞外120 kDa C17结构域的精确脱落,并提高了对层粘连蛋白332的粘附能力。三维(3D)皮肤等效物在表皮和真皮之间的基底膜区域内表现出C17的认可和连续沉积。我们的发现构成了第一次基于基因编辑的Col17a1突变的校正,并证明了基于Cas9 D10A Nickase比野生型CAS9 Cas9基于野生型Cas9策略在临床环境中基于基因重塑的Prox-Imal配对迹象策略的优越性。
摘要背景:在新药研发研究中,传统的湿实验周期较长,通过计算机模拟预测药物-靶标相互作用(DTI)可以大大缩小候选药物的搜索范围,优秀的算法模型可能更有效地揭示药物、蛋白质等相关数据构成的生物信息网络中药物与靶标之间的潜在联系。结果:本工作开发了一种异构图神经网络模型HGDTI,包括网络节点嵌入的学习阶段和DTI分类的训练阶段。该方法首先获取药物的分子指纹信息和蛋白质的伪氨基酸组成信息,然后通过Bi-LSTM提取节点的初始特征,并利用注意力机制聚合异构邻居。在多个对比实验中,HGDTI的整体性能明显优于其他最先进的DTI预测模型,并采用负采样技术进一步优化模型的预测能力。此外,我们通过异构网络内容缩减测试证明了HGDTI的鲁棒性,并通过其他对比实验证明了HGDTI的合理性。这些结果表明HGDTI可以利用异构信息来捕获药物和靶标的嵌入,为药物开发提供帮助。结论:基于异构图神经网络模型的HGDTI可以利用异构信息来捕获药物和靶标的嵌入,为药物开发提供帮助。为了方便相关研究人员,我们在http://bioinfo.jcu.edu.cn/hgdti建立了一个用户友好的Web服务器。
摘要。异步公共子集(ACS)问题是分布式计算中的一个基本问题。最近,Das等人。(2024)开发了一种具有多种理想属性的新ACS协议:(i)它提供了最佳的弹性,可容忍总共n派的T 本文的目的是从现代理论加密图的角度进行详细的,独立的说明和对该协议的分析,从而实现了定义和证明的许多细节,从而提供了基于关于Hash功能的具体安全性假设的完整安全分析(即,不依赖于随机的或依赖于随机的构图),并依赖于所有的构图,并在所有的构图中进行了整个构图。本文的目的是从现代理论加密图的角度进行详细的,独立的说明和对该协议的分析,从而实现了定义和证明的许多细节,从而提供了基于关于Hash功能的具体安全性假设的完整安全分析(即,不依赖于随机的或依赖于随机的构图),并依赖于所有的构图,并在所有的构图中进行了整个构图。
CO1: Develop mathematical model and analyse engineering problems CO2: Apply linear programming concepts to solve real life problems CO3 : Formulate and solve complex engineering problems using non programming techniques CO4 : Analyse and solve stochastic engineering problems Module 1: Vector spaces, subspaces, Linear dependence, Basis and Dimension, Linear transformations, Kernels and Images , Matrix representation of linear transformation, Change of basis, Eigen线性运算符模块的值和特征向量2线性编程问题的数学公式,单纯形方法,线性编程中的双重性,双单纯形方法。模块3非线性编程初步,不受约束的问题,搜索方法,斐波那契搜索,金段搜索,搜索,约束问题,拉格朗日方法,库恩 - 塔克条件4随机变量,分布和密度和密度功能,矩和矩和瞬间的功能,自动变量和状态分布,条件分布,条件分布,条件分布,条件分布,条件分布,构图,构成,构造,构成了构图,构成了构图,构成了构图,构成了构图,构成了构图,构成了序列,构成了构图,构成了构图,构成了构图,构成了构图,构成了构图过程。教科书和参考文献1。J.C. PANT:优化概论,Ja那教兄弟,新德里,2014年2。S.S. Rao:优化理论与应用,新时代,新德里,2012年3月3日肯尼斯·霍夫曼(Kenneth Hoffman)和雷·库兹(Ray Kunze),线性代数,第2版,皮尔逊,2015年2。Erwin Kreyszig,使用应用的入门功能分析,John Wiley&Sons,2004。3。Irwin Miller和Marylees Miller,John E. Freund的数学统计,第6 Edn,Phi,2002年。4。约翰·B·托马斯(John B Thomas),《应用概率和随机过程简介》,约翰·威利(John Wiley),2000Roy D Yates,David J Goodman,“概率和随机过程”,第2版,Wiley India,2011年5。爸爸,概率,随机变量和随机过程,第三版,麦格劳山,2002 6。
抽象的二维(2d)/Quasi-2d有机无机卤化物钙钛矿被视为自然形成的多个量子孔,其由长的有机链分离出来的无机层,这些层被长的有机链分离出来,这些链条表现出分层结构,大激子结合能,强大的非线性光学效应,强烈的非线性光学效应,可调节的频带通过层次或化学构图,并改善了层次或化学的构图,改善了构图,并改善了稳定的构图,并改善了稳定性。长长的有机链的广泛选择endows 2d/quasi-2d perovskites具有可调电子偶联强度,手性或铁电特性。尤其是,2D/Quasi-2d Perovskites的分层性质使我们能够将它们去角质以与其他材料集成以形成异质结构,这是光电设备的基本结构单元,这将极大地扩展了2D/Quasi-2d perovskites的多样性的功能。在本文中,回顾了2D/Quasi-2d钙钛矿的最新成就。首先,引入了2D/Quasi-2d Perovskites的结构和物理性质。然后,我们讨论了基于2D/Quasi-2d钙钛矿的异质结构的构建和表征,并突出了构造的异质结构的显着光学特性。此外,2D/Quasi-2d钙钛矿的潜在应用基于光伏设备,发光设备,光电轨道/光传递器和Valleytronic设备是
使用钢铁法(8)或构图(9)的方法。视觉检查是一种评估拱形和脚对准的方法,并被医生广泛使用;但是,它们的分类是主观的,并且具有较高的评价者变异性(10)。关于定量方法,与钢铁测量法(11)相比,podographs是低成本且更易于应用的;阶数的变异性低于VI(12)。构图的解释可以基于不同的方法,例如VI,Arch Index(AI),Arch足迹角(AFA),足迹索引(FI),Arch-Length Index(Ali),截短的Arch Index(Tai)和Chippaux-Smirak Index(CSI)(CSI)(CSI)(12-17)。但是,每种技术都使用不同的参数来对脚姿势进行分类,并且有些技术不会在分类之间呈现截止阈值。此外,用于对每种绘画方法进行分类的脚的参数是不同的(12-17);重要的是要阐明技术之间的协议是否令人满意,以便医生可以使用他们的首选选择。因此,这项研究的目的是比较文献中用于对脚摄影图像进行分类的不同参数的效率,并确定它们之间的一致性水平。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。