神经网络的硬件实现是利用神经形态数据处理优势和利用与此类结构相关的固有并行性的里程碑。在这种情况下,具有模拟功能的忆阻设备被称为人工神经网络硬件实现的有前途的构建块。作为传统交叉架构的替代方案,在传统交叉架构中,忆阻设备以自上而下的方式以网格状方式组织,神经形态数据处理和计算能力已在根据生物神经网络中发现的自组织相似性原理实现的网络中得到探索。在这里,我们在图论的理论框架内探索自组织忆阻纳米线 (NW) 网络的结构和功能连接。虽然图度量揭示了图论方法与几何考虑之间的联系,但结果表明,网络结构与其传输信息能力之间的相互作用与与渗透理论一致的相变过程有关。此外,还引入了忆阻距离的概念来研究激活模式和以忆阻图表示的网络信息流的动态演变。与实验结果一致,新出现的短期动力学揭示了具有增强传输特性的自选择通路的形成,这些通路连接受刺激区域并调节信息流的流通。网络处理时空输入信号的能力可用于在忆阻图中实现非常规计算范式,这些范式充分利用了生物系统中结构和功能之间的固有关系。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
尽管网格尚未面对专门针对电动汽车或其设备的网络攻击,但风险仍然迫在眉睫。随着对手越来越多地针对关键的能源基础设施,网络攻击 - 从勒索软件到国家赞助的破坏 - 利用我们相互联系的系统中的漏洞。这些攻击可能导致停电,燃料短缺和严重的经济损失,损害电网可靠性和国家安全。这种干扰可能会导致数百万欧元的运营成本以恢复与停电相关的费用。
今天,全球企业(大小)是关于无缝信息交流的。速度,内容和集成对于任何企业生存至关重要。此外,贸易随着一天而变得无边界,因此,迎合企业各个领域的ICT应用程序变得越来越有必要,而与企业的规模无关。数字化转型为印度公司在全球市场竞争创造了一个公平的竞争环境。在一个时代,技术破坏可以迅速改变整个行业,印度公司必须评估其理解和指导数字化转型计划的能力。随着印度向清洁流动性的过渡,2024年目睹了绿色部门,例如电动移动性,绿色氢和太阳能,这使印度定位为可再生能源的大型市场,再加上战略性和导电业务生态系统。
结直肠癌(CRC)是最常见的恶性肿瘤之一,对人类健康构成了严重威胁。结直肠癌类器官是通过从患者中提取肿瘤细胞并结合三维培养技术来建立实验室的微型肿瘤模型。与传统的二维培养系统相比,大肠癌器官可以保留原发性肿瘤的分子特征和细胞组成,并模拟培养环境中实际肿瘤的生物学特征和组织结构。因此,类器官已成为癌症生物学,药物筛查和个性化治疗领域的重要研究工具,并显示了广泛的应用前景。本文回顾了结直肠癌类器官的研究进展,详细讨论了器官的培养条件,并总结了其在结直肠癌建模,CRC Organoid Biobank构造,药物筛查,毒性评估和个性化治疗中的应用。进步。通过这些内容,本文旨在为结直肠癌器官技术在基础研究和临床治疗中的进一步应用提供有用的参考和参考。
机器人需要了解他们的环境才能执行其任务。如果可以在封闭环境中预先编程的视觉场景分析过程,则在开放环境中运行的机器人将从与环境的互动中学习它的能力。此功能进一步为获得提供的图表开辟了道路,在该图中,机器人的动作能力结构了其视觉场景的理解。我们提出了一种方法,通过依靠互动感知方法和在线分类来建立此类负担图地图,并为配备两个具有7个自由度的武器的真正机器人进行在线分类。我们的系统是模块化的,可以从不同技能中学习地图。在提议的负担形式化中,行动和效果与视觉特征有关,而不是对象,因此我们的方法不需要事先定义对象概念。我们已经在三个动作原语和真实的PR2机器人上测试了该方法。
©作者。2020 Open Access本文根据创意共享归因4.0国际许可证,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
老芒麦是一种优良的饲草和生态修复草,在草原生态建设和畜牧业可持续发展中发挥着重要作用。中国老芒麦野生种质资源丰富,相似和对比的气候条件塑造了不同的种群,丰富了老芒麦的遗传多样性。为了更全面、低成本地聚合老芒麦种质资源,更精准地利用其遗传变异,本研究对老芒麦核心种质资源收集及利用单核苷酸多态性(SNP)标记进行指纹分析进行了初步探索。通过多种评价指标结合加权处理,从90份野生老芒麦样品中成功鉴定出36份材料作为核心种质。 36个核心种质样品的遗传多样性评估、等位基因评估和主成分分析均表明这36个样品准确、全面地代表了90份老麦种质的遗传多样性。另外,从90份老麦样品全基因组测序产生的高质量SNP位点中,鉴定出290个SNP位点作为候选标记,其中52个SNP位点被筛选为老麦DNA指纹分析的核心标记。并利用竞争性等位基因特异PCR(KASP)技术,基于这些核心标记对60份野生老麦种质进行了居群起源鉴定。本研究筛选出的核心SNP标记能够准确区分来自青藏高原和其他地区的老麦种质资源,为老麦种质资源的继续收集和鉴定提供参考,也为老麦种质资源的保存和利用提供科学依据。
提琴手是负责人AI的多合一AI可观察性和安全平台。监视和分析功能提供了一种通用语言,集中控制和可行的见解,以使生产ML模型,Genai和LLM应用具有信任。Fiddler Trust Service是该平台不可或缺的一部分,为LLM应用程序提供了质量和节制控件。由成本效率,特定于任务和可扩展的提琴手开发的信任模型(包括用于安全环境的空调部署)提供支持,它提供了行业中最快的护栏。
这里提出的反思工作旨在展示如何将这种通过流动实现循环经济的方法转化为一个结构模型,该模型综合了不同的文献资料,其中我们可以发现对循环供应链的呼吁[1],价值金字塔(根据主要的7R)[3],以及向10R的演变[2]。该模型旨在展示允许SCC成为“高循环性”运营核心的主要结构,通过尽可能确保在使用过程中最大限度地保存材料的价值,通过追求提高产品和材料使用效率的目标,然后尽可能地限制在“使用结束时”的价值损失,无论考虑的产品和材料及其状态如何。首先,我们将努力对循环供应链 (SCC) 提供一个共识和科学的定义,然后描述包括 REP 部门在内的再处理部门的 SCC 需求。然后,第二步,将通过阿赫特伯格金字塔 [3] 的初始棱镜来解决流动的循环性问题,但尽量详尽地考虑 10R 命令。目标是在 REP 部门和 SCC 解决方案的结构之间建立联系,以便在转型中取得最佳成功
随着电子产品需求的不断增长,新型专用集成电路 (ASIC) 设计的开发周期也越来越短。为了满足这些较短的设计周期,硬件设计人员在设计中应用了 IP 模块的可重用性和模块化原则。带有集成处理器和通用互连的标准片上系统 (SoC) 架构大大减少了设计和验证工作量,并允许跨项目重复使用。然而,这带来了额外的复杂性,因为 ASIC 的验证还包括在集成处理器上执行的软件。为了提高可重用性,硬件 IP 模块通常用更高抽象级别的语言(例如 Chisel、System-RDL)编写。这些模块依靠编译器(类似于软件编译器)来生成 RTL 仿真和实现工具可读的 Verilog 源文件。此外,在系统级,可以使用 C++ 和 SystemC 对 SoC 进行建模和验证,这进一步凸显了软件编译的重要性。这些要求导致需要一个支持典型硬件流程和工具以及 C++、C 和汇编语言的软件编译和交叉编译的构建系统。现有的硬件构建系统被发现存在不足(见 II),特别是对软件编译(即 C++、C 和汇编语言)的支持极少甚至没有。因此,CERN 的微电子部门启动了一个名为 SoCMake [1] 的新构建系统的开发。SoCMake 最初是作为片上系统抗辐射生态系统 (SOCRATES) [14] 的一部分开发的,该系统可自动生成用于高能物理环境的基于 RISC-V 的容错 SoC,后来发展成为用于 SoC 生成的通用开源构建工具。
