摘要经硫代蛋白(TTR)是一种在血液和脑脊液中发现的本质四聚甲状腺素转运蛋白,其错误折叠和聚集会导致经胆囊素淀粉样变性。将小分子tafamidis(Vyndaqel/vyndamax)鉴定为天然TTR倍数的有效稳定剂,并且这种聚合抑制剂是用于治疗TTR淀粉样蛋白病的治疗的监管机构批准的。尽管对TTR进行了50年的结构研究以及基于结构的药物设计的胜利,但仍有明显的结构信息可用于了解配体结合变构和淀粉样蛋白生成的TTR展开中间体。,我们使用单粒子冷冻电子显微镜(冷冻EM)研究了一个55千达尔顿四聚体的构象形态,在一个或两个配体的情况下,揭示了四腔体系结构中固有的不对称性,并且先前未观察到的构象状态。这些发现提供了对负合作配体结合和负责TTR淀粉样生成的结构途径的关键机理见解。这项研究强调了冷冻EM提供对蛋白质结构的新见解的能力,这些蛋白质结构在历史上被认为太小而无法可视化,无法识别由晶体晶格的构造所抑制的药理靶标,从而在基于结构的药物设计中开放了未知领域。
co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。 许可证:CC由4.0https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。许可证:CC由4.0
摘要:阐明电荷序列对聚电解质构象的影响对于理解许多生物物理过程并推进序列定义的聚合物材料的设计很重要。可以使用多肽研究这种作用,该效应允许与精确的单体序列合成聚合物链。在这里,我们使用单分子力实验来探索电荷间距对多肽构象的影响。我们测试了由亲水性且无带电或负电荷的单体组成的多肽序列。我们发现链持续长度对净电荷和离子强度不敏感。随着溶液的增加离子强度,我们观察到溶剂质量的良好到表面的转变,其theta点随电荷间距而缩放。因此,我们的结果揭示了静电驱动的排除体积效应和不敏感的局部构象柔韧性之间的复杂相互作用,我们认为这与带电组在侧链上的位置有关。■引入生物聚合物,例如核酸和蛋白质,将它们的结构和功能直接编码到其序列中。这激发了序列定义的聚合物材料的设计,其工程结构和功能复杂性接近自然界中的序列和功能复杂性。1-4此类材料的从头设计需要对单体序列如何影响聚合物的结构和结构的基本理解。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。具体而言,已经广泛探索了聚电解质中的静电效应,因为它们可以驱动结构形成以及与环境中其他分子的相互作用。调节聚电解质的电荷序列已显示出显着改变其构象行为5-7以及在许多生物物理过程中的活性。10,11
摘要:确定寡聚受体(OAS)的分子构象及其对分子填料的影响对于理解其所得聚合物太阳能电池(PSC)的光伏性能至关重要,但尚未得到很好的研究。在此,我们合成了两个二聚体受体材料,dibp3f-se和dibp3f-s,它们分别通过硒和噻吩桥接了Y6衍生物的两个段。理论仿真以及实验1D和2D NMR光谱研究证明,两个二聚体都表现出除S-或U形的相对词以外的O形构象。值得注意的是,这种O形构象可能受到独特的“构象锁定”机制的控制,这是由于其在二聚体内的两个末端组之间的分子内π -π相互作用加剧而产生的。基于Dibp3F-SE的PSC提供的最大效率为18.09%,表现优于基于DIBP3F-S的细胞(16.11%),并且在基于OA的PSC的最高效率中排名。这项工作展示了一种轻松获得OA构象的方法,并突出了二聚体受体对高性能PSC的潜力。
蛋白激酶功能和与药物的相互作用部分由DFG和w-C-螺旋序的运动控制,这使激酶能够采用各种构象状态。小分子配体引起具有不同选择性谱和停留时间的治疗作用,通常取决于它们结合的激酶构象。然而,在不活动状态下,实验确定的激酶的实验确定的结构数据的可用性限制了该主要蛋白质家族的药物发现工作。基于AI的现代结构建模方法具有探索以前实验未知的可吸毒构象空间的潜力。在这里,我们首先评估了PDB中激酶的当前构象空间以及由Alphafold2(AF2)(1)(1)和Esmfold(2)生成的模型,这是两种基于AI的显着结构预测方法。然后,我们根据此参数探索构象多样性的能力,研究了AF2在各种多序列比对(MSA)深度下预测不同构象中的激酶结构的能力。我们的结果表明,在PDB中,AF2和ESMFOLD产生的结构模型存在偏差,而Esmfold朝着活跃状态中的激酶结构而不是替代构象,尤其是DFG基序控制的构象。最后,我们证明,使用AF2在较低的MSA深度上预测激酶结构可以探索这些替代构型的空间,包括识别398个激酶的先前未观察到的构象。我们对AF2对结构建模的分析结果创造了一种新的途径,以追求新的治疗剂,以针对臭名昭著的难以靶向的蛋白质家族。
摘要我们计算研究Zika NS3解旋酶,这是一种使用ATP水解能进行核酸重塑的生物运动。通过经典和QM/MM模拟,我们探索了图案V的构象局势,该构象形象V连接了用于ATP水解和核酸结合的活性位点的保守环。由元磷酸组形成引发的ATP水解涉及由GLU286质子抽象激活的水分子的亲核攻击。基元V氢键通过Gly415骨干NH组与该水键合,从而有助于水解。当无机磷酸盐从镁离子的配位壳移开时,释放自由能,自由能被释放出来,从而诱导了基序V的构象构象构象构象构象形态的显着转移,以在Gly415 NH和Glu285之间建立氢键。Zika NS3解旋酶充当棘轮生物电动机,其基序V转变由Gly415的γ-磷酸在ATPase位点引导。
Mariano Mariano,Fernando Batista,Maurel Manon,Anthony Bouillon,Laura Ortega,Anne Marie Wehenkel,Lucile骑士,Blondel Ahmed,Ahmed Haouz,Jean-François,
NDP52是一种自噬受体,涉及入侵病原体和受损细胞器的识别和降解。尽管NDP52是在核中首次识别的,并在整个细胞中表达,但迄今为止,NDP52尚无明显的核功能。在这里,我们使用多学科方法来表征NDP52的生化特性和核作用。我们发现,NDP52在文档启动位点具有RNA聚合酶II(RNAPII)的簇,并且其过表达促进了其他转录簇的形成。我们还表明,NDP52的耗竭会影响两个模型哺乳动物细胞中的总体基因表达水平,并且转录抑制作用会影响核中NDP52的空间组织和分子动力学。这将NDP52与依赖性转录中的角色联系起来。此外,我们还表明,NDP52与双链DNA(DSDNA)结合,并具有高度的a(DSDNA),并且这种相互作用会导致体外DNA结构的变化。这与我们的蛋白质组学数据一起表明与核小体重塑蛋白和DNA结构调节剂相互作用富集,这表明NDP52在染色质调节中的可能功能。总的来说,我们在这里发现了NDP52在基因表达和DNA结构调节中的核作用。
三磷酸腺苷结合盒(ABC)转运蛋白,例如多药耐药蛋白1(MRP1),通过在质膜上输出异种化合物来预防细胞毒性。然而,构型MRP1功能阻碍了某些癌症的血脑屏障递送,而MRP1过表达导致获得的多药耐药性和化学疗法衰竭。小分子抑制剂具有阻断底物运输的潜力,但很少显示MRP1的特异性。在这里,我们鉴定出一种名为CPI1的大环肽,该肽抑制了MRP1,但显示出对相关多药物多糖转运蛋白P-糖蛋白的最小抑制作用。在3.27Å分辨率下的冷冻电子显微镜(冷冻EM)结构表明,CPI1与生理底物白细胞三烯C4(LTC 4)在同一位置结合MRP1。与两个配体相互作用的残基都包含大型,柔性的侧链,它们可以形成各种相互作用,揭示了MRP1如何识别多个结构无关的分子。CPI1结合可以防止三磷酸腺苷(ATP)水解和底物转运所需的构象变化,这表明它可能具有作为治疗候选者的潜力。