摘要。过去气候的定量重建是19评估气候模型如何重现气候变化的重要资源。一种广泛使用的统计20方法,用于从化石生物组合进行此类重建的方法加权21平均部分最小二乘回归(WA-PLS)。然而,已知的22个WA-PLS产生重建的趋势是压缩到用于校准的气候范围的中心的重建,可能会偏向重建的过去气候。我们通过假设:(a)相对于所考虑的气候变量,每个分类单元的理论丰度为25个单峰; (b)观察到的分类单元丰度26遵循多项式分布,其中样品的总丰度在气候上是27个不明智的; (c)在给定站点和时间的气候价值的估计使得28个观察结果最有可能,即它最大化对数可能性函数。此气候29估计值是通过将其气候公差的30反平方平方的加权分类单元丰度近似。我们通过考虑训练数据集中气候变量的频率31(FX)进一步改善方法。与WA-PLS相比,具有FX校正的TWA-PLS大大减少了压缩偏置,并基于广泛的现代花粉数据集改善了33个重建的模型性能。34
高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
natalia bobkova - Clle,CNRS和ToulouseUniversitéde toulouseJaurèsFabioMonterni - Clle,CNRS和ToulouseJeanJaurès大学摘要本文致力于罗素(Russian)派生形容词中的后缀之间的竞争。,它提出了基于俄罗斯国家语料库的大规模定量分析。它的主要目标是为确定确定这些衍生物中后缀选择的属性做出贡献。俄罗斯的代名词形容词派生使用了各种各样的指数。其中大多数是三个主要后缀的语音变体(扩展)-n-, - SK-和-OV-。后者可以被认为是基本的,构成了我们分析的重点。为这项研究构建了两个数据集,其中一个包含上面的后缀之一,一个更具体的包含Doublet的数据集,即形容词在同一基础上具有不同后缀。通过各种统计模型分析了两组的数据。我们的结果在全球范围内提供了对先前文献中先前进行的观测值的定量确认。特别是,我们表明-n-在俄罗斯的衍生系统中占有特定的位置,因为它的生产力较低,其衍生物倾向于较不透明,并且更容易显示词汇化的含义,这些含义指向朝向定性 - 相关语义谱的定性极点。- SK-和 - OV-更可能形成双重峰(附着在相同的基础上),这是一个进一步的论点,支持它们之间更大的同质性,而不是-n-。关键字:俄语,衍生形态,代表形容词,定量语言学,语料语言学,统计方法的统计方法1.引入俄罗斯名词中形容词的推导是观察和分析词缀竞争的有趣基础。代名词形容词(我们可能在全球范围内将其表征为具有关系价值)实际上可能是通过这种语言来得出的,主要是通过三种不同的后缀 - n-, - sk-和 - ov-或多个变体,基本上扩展了后者的变体。文献中已经进行了几次尝试,以隔离确定选择一个或其他后缀 /变体的因素,以绝对或倾向(参见< / div>)Townsend 1975; Švedova1980; Zemskaja 2015; Hénault&Sakhno 2016等)。 确定的因素包括基本名词和衍生物的语音,形态学,语义和词源特性,或与两者之间关系相关的特性。 然而,除了对小词汇集的一些研究外,仍然缺乏对这种现象的观察。 我们在本文中进行的研究是对俄罗斯代表形容词进行大规模分析的方向的第一步。 我们的主要目标是构建强大的统计模型,以预测相关派生中的后缀的选择。 特别是,我们从俄罗斯国家语料库中构建了两个不同的数据集:一般形容词的一般数据集,其中包含上面列出的主要后缀之一,以及在语料库中遇到的所有Doublet的数据集,即>Townsend 1975; Švedova1980; Zemskaja 2015; Hénault&Sakhno 2016等)。确定的因素包括基本名词和衍生物的语音,形态学,语义和词源特性,或与两者之间关系相关的特性。然而,除了对小词汇集的一些研究外,仍然缺乏对这种现象的观察。我们在本文中进行的研究是对俄罗斯代表形容词进行大规模分析的方向的第一步。我们的主要目标是构建强大的统计模型,以预测相关派生中的后缀的选择。特别是,我们从俄罗斯国家语料库中构建了两个不同的数据集:一般形容词的一般数据集,其中包含上面列出的主要后缀之一,以及在语料库中遇到的所有Doublet的数据集,即形容词在同一底座上用不同的后缀构建。实际上我们将表明的是,对双重组的研究可能会阐明系统的全球动态,特别是当这样的
图1。A)在PT/INGA/N -SI/SIO/SIO X/PT下,AO-ECL发射(AO-ECL)的方案是由EXC光子吸收触发的。b)电荷传输机制的方案,导致可见的440-nm光子在固体界面处产生。c)在PT/INGA/INGA/N -SI/SIO X/PT(CYAN曲线)和电解质吸收(灰色曲线)时,在PT/INGA/N -SI/N-SIO/SIO X/PT(灰色曲线)时,在PT/INGA/N -SI/N-SI/N-SIO/SIO X/PT(灰色曲线)处的IR 850 nm LED(棕色曲线)的归一化光谱。si bandGap由虚线的黑线表示,由AO-ECL诱导的波长的移位由红色箭头表示。d)N -Si/Sio X的XPS调查光谱,在涂层之前(橙色曲线)和N -SI/SIO X/PT的N -Si/Sio X/PT,在溅射2 nm厚的PT膜(粉红色曲线)后。
背景:心理理论(汤姆)是指理解他人心态,欲望,情感,信念和意图的能力,以预测其心理表征的内容。已经研究了汤姆内的两个主要维度。首先是推断精神状态的类型,可以是认知或情感的。第二个过程包括根据其复杂程度(一阶和二阶错误信念和高级TOM)所涉及的过程类型。汤姆的收购是基本的,这是日常人类社会互动发展的关键组成部分。汤姆·迪特(Tom Defit)已通过评估社会认知不同方面的各种工具在各种神经发育障碍中报道了。尽管如此,突尼斯的从业人员和研究人员缺乏语言和文化上适当的心理测量工具,用于学龄儿童的TOM评估。
引言。不可逆性从时间对称物理定律中产生是当代物理学的核心问题。事实上,物理学中存在几种解决不可逆性的方法:统计力学方法[1-3];信息论对逻辑上不可逆任务的描述[4-6];经典和量子热力学第二定律[2,7-9]。在所有这些情况下,描述不可逆现象的定律和微观动力学的时间反演对称性之间都会产生矛盾。在本文中,我们将不可逆性表达为这样一种要求:一种转变是可能的(即,它可以被一个循环运行的系统无限好地实现),而它的逆转变则不能。考虑到焦耳的实验[2],可以直观地理解这种不可逆性的起源:虽然只能通过机械方式将一定体积的水加热,但不可能通过相同的方式将其冷却。更一般地,如果一个变换可以通过一个循环工作的机器任意地实现,那么对于逆变换,情况可能就不一样了,即使在
摘要 - 对性能的持续追求推动了专业人员,以结合多个内核,缓存,加速单元或投机执行,使系统变得非常复杂。另一方面,这些功能通常会暴露出构成新挑战的意外漏洞。为了进行检查,可以利用缓存或投机执行引入的定时差异以泄漏信息或检测活动模式。保护嵌入式系统免受现有攻击是极具挑战性的,而且由于新的微体系攻击的持续崛起(例如,幽灵和编排攻击),这使它变得更加困难。在本文中,我们提出了一种新方法,该方法基于计数示意图,用于检测嵌入式系统介绍的微处理器中的微体系攻击。这个想法是将安全检查模块添加到系统中(无需修改保护器,而不是在保护下),负责观察被提取的说明,并识别和发出信号可能的可疑活动,而无需干扰系统的标称活动。可以在设计时(在部署后重新编程)对所提出的方法进行编程,以便始终更新Checker能够识别的攻击列表。我们将所提出的方法集成到了大型RISC-V核心中,我们证明了它在检测几种版本的幽灵,编排,Rowhammer和Flush+重新加载攻击方面的有效性。在最佳配置中,提出的方法能够检测到100%的攻击,没有错误的警报,并引入了大约10%的面积开销,大约增加了4%的功率,并且没有降低工作频率。
原子和固态自旋集合是有前途的量子技术平台,但实际架构无法解析单个自旋。不可解析的自旋集合的状态必须遵循置换不变性条件,但目前尚不清楚生成一般置换不变 (PI) 状态的方法。在这项工作中,我们开发了一种系统策略来生成任意 PI 状态。我们的协议首先涉及用工程耗散填充特定的有效角动量状态,然后通过改进的 Law-Eberly 方案创建叠加。我们说明了如何通过现实的能级结构和相互作用来设计所需的耗散。我们还讨论了可能限制实际状态生成效率的情况,并提出了脉冲耗散策略来解决这些问题。我们的协议解锁了以前无法访问的自旋集合状态,这可能有利于量子技术,例如更强大的量子存储器。