环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,始于深思熟虑的规划。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。环境保护是一个持续的过程。始终注意保护环境和减少浪费的方法。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保监控人员是否可能受到热伤害。在高温等级增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前 CBRN 原则。每个人都对安全负责。每次任务或行动前都必须完成全面的风险评估。
组织工程对患病组织的再生和修复具有巨大的希望,使组织工程支架的发展成为对生物医学研究的极大兴趣的话题。由于它们的生物相容性和与天然细胞外基质的相似性,因此水凝胶已成为工程组织支架的主要候选者。然而,诸如孔隙率之类的水凝胶特性的精确控制仍然是一个挑战。传统技术在组织工程中表现出成功的水凝胶。但是,条件通常与直接细胞封装不相容。新兴技术已经证明了控制孔隙度和水凝胶中的微构造特征的能力,从而创建了具有与天然组织相似的结构和功能的工程组织。在这篇综述中,我们探索了控制水凝胶内孔隙度和微体系结构的各种技术,并证明了将这些技术结合的成功应用。
M.Cristina diamantini coll:•Carlo A. Tugenberger,瑞士科学•Valerii Vinokur,Terra Quantum ag•Luca Gammaitoni,Perugia大学•Yavok Kopelevich,Yavok Kopelevich,Yavok Kopelevich,Universide de Campinas•Alexey Mironov,Svetlana Localovauctiie semickoductuctuctuctuctuctuctiire Inverave inverave in naviova Noguiera Leibniz学院德累斯顿•Nicola Poccia Leibniz Institute Dresden•Christoph Strunk,雷根斯堡大学
无人驾驶飞行器 (UAV) 是一种飞行机器人,在民用和军用领域均有使用,且使用量呈急剧增长趋势。它们已广泛应用于民用领域,如执法、地球表面测绘和灾害监测,以及军事任务,如监视、侦察和目标捕获。随着对无人驾驶飞行器使用量的需求不断增长,在自主性、飞行能力和有效载荷方面具有更大进步的新型设计正在涌现,可携带更复杂、更智能的传感器。随着这些技术进步,人们将为无人驾驶飞行器找到新的作战领域。本论文主要研究新型无人驾驶飞行器 (SUAVI:萨班哲大学无人驾驶飞行器) 的设计、构造和飞行控制。SUAVI 是一种电动紧凑型四倾翼无人驾驶飞行器,能够像直升机一样垂直起降 (VTOL),并通过倾斜机翼像飞机一样水平飞行。它携带机载摄像机,用于捕捉图像并通过与地面站的射频通信进行广播。在 SUAVI 的气动和机械设计中,考虑了飞行时间、飞行速度、尺寸、电源和要执行的任务。气动设计是通过考虑气动效率的最大化和安全飞行特性来进行的。推进系统中的组件的选择是为了优化推进效率并满足要求
最小完美哈希函数 (MPHF) 用于有效访问大型字典 (键值对集) 的值。发现构建 MPHF 的新算法是一个活跃的研究领域,尤其是从存储效率的角度来看。MPHF 的信息论极限为 1 ln 2 ≈ 1.44 位/键。当前最佳实用算法的范围是每个键 2 到 4 位。在本文中,我们提出了两种基于 SAT 的 MPHF 构造。我们的第一个构造产生的 MPHF 接近信息论极限。对于这种构造,当前最先进的 SAT 求解器可以处理字典包含多达 40 个元素的情况,从而优于现有的 (蛮力) 方法。我们的第二个构造使用 XOR-SAT 过滤器来实现一种实用方法,每个键的长期存储量约为 1.83 位。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年4月2日发布。 https://doi.org/10.1101/2024.03.14.585029 doi:Biorxiv Preprint
引言。不可逆性从时间对称物理定律中产生是当代物理学的核心问题。事实上,物理学中存在几种解决不可逆性的方法:统计力学方法[1-3];信息论对逻辑上不可逆任务的描述[4-6];经典和量子热力学第二定律[2,7-9]。在所有这些情况下,描述不可逆现象的定律和微观动力学的时间反演对称性之间都会产生矛盾。在本文中,我们将不可逆性表达为这样一种要求:一种转变是可能的(即,它可以被一个循环运行的系统无限好地实现),而它的逆转变则不能。考虑到焦耳的实验[2],可以直观地理解这种不可逆性的起源:虽然只能通过机械方式将一定体积的水加热,但不可能通过相同的方式将其冷却。更一般地,如果一个变换可以通过一个循环工作的机器任意地实现,那么对于逆变换,情况可能就不一样了,即使在
背景:心理理论(汤姆)是指理解他人心态,欲望,情感,信念和意图的能力,以预测其心理表征的内容。已经研究了汤姆内的两个主要维度。首先是推断精神状态的类型,可以是认知或情感的。第二个过程包括根据其复杂程度(一阶和二阶错误信念和高级TOM)所涉及的过程类型。汤姆的收购是基本的,这是日常人类社会互动发展的关键组成部分。汤姆·迪特(Tom Defit)已通过评估社会认知不同方面的各种工具在各种神经发育障碍中报道了。尽管如此,突尼斯的从业人员和研究人员缺乏语言和文化上适当的心理测量工具,用于学龄儿童的TOM评估。
原子和固态自旋集合是有前途的量子技术平台,但实际架构无法解析单个自旋。不可解析的自旋集合的状态必须遵循置换不变性条件,但目前尚不清楚生成一般置换不变 (PI) 状态的方法。在这项工作中,我们开发了一种系统策略来生成任意 PI 状态。我们的协议首先涉及用工程耗散填充特定的有效角动量状态,然后通过改进的 Law-Eberly 方案创建叠加。我们说明了如何通过现实的能级结构和相互作用来设计所需的耗散。我们还讨论了可能限制实际状态生成效率的情况,并提出了脉冲耗散策略来解决这些问题。我们的协议解锁了以前无法访问的自旋集合状态,这可能有利于量子技术,例如更强大的量子存储器。
场景意象在我们回忆自传体记忆、想象未来和在世界中探索时起着重要作用。因此,在本研究中,我们试图更好地了解大脑如何支持场景表征。处理场景涉及各种认知过程,这些过程在现实世界中具有高度交互性。然而,在这里,我们的目标是分离语义和空间构造场景过程,以便识别每个过程特有的大脑区域、它们共同拥有的区域以及区域之间的连接。为此,参与者在功能性磁共振成像期间搜索场景中的语义或空间构造不可能性。我们只关注那些可能的场景,从而消除任何会引起惊讶或新奇等反应的错误检测。重要的是,我们还在参与者之间平衡了可能的场景,使我们能够在两种不同条件下检查相同可能场景图像的大脑活动和连接性。我们发现参与者在每种条件下都采用了不同的认知策略,这反映在不同的眼球运动行为中。这些反过来又与颞叶外侧皮层和顶叶皮层在语义场景处理中的参与度增加、海马体在空间构造场景处理中的参与度增加以及腹内侧前额叶皮层 (vmPFC) 的激活度增加有关,腹内侧前额叶皮层 (vmPFC) 是两者共有的。连接性分析表明,vmPFC 根据手头的任务在语义和空间构造大脑网络之间切换。这些发现进一步强调了颞叶外侧区域众所周知的语义功能,同时为先前断言的海马体对场景构造的贡献提供了额外的支持,以及最近提出的 vmPFC 可能在协调场景处理中发挥关键作用的建议。