摘要:近年来,太阳能已被证明是有可能取代化石燃料的最有效,最清洁的能源之一。在这一可再生能源领域进行了许多研究,以增加太阳能电池的生产并使其更负担得起。提高太阳能电池效率的最佳和最独特的方法之一是使用太阳能跟踪器。这导致采用自动太阳能跟踪器方法。该项目的结果优于常规的太阳能电池板,这些太阳能电池板永久固定在利用太阳能上。成功完成原型后,发现跟踪器可以旋转并跟踪阳光直射,该阳光约占输出电压的90%。这些信息用于验证我们的研究。根据计划的太阳能跟踪的预测估计
1 GMO控制实验室,植物生物技术和细胞遗传学系,植物育种和适应研究所 - 北部研究所,RadzikóW,05-870Błonie,波兰; krzysztof.michalski@ihar.edu.pl(K.M.); j.zimny@ihar.edu.pl(J.Z.)2植物生殖生物学,莱布尼兹植物遗传学与作物植物研究所(IPK),德国Seeland 06466; kumlehn@ipk-gatersleben.de(J.K。); hertig@ipk-gatersleben.de(c.h.)3种子生产和植物育种经济学实验室,种子科学技术系,植物育种与适应研究所 - 国有研究所,RadzikóW,05-870Błonie,波兰; d.mankowski@ihar.edu.pl 4生物科学研究所,生物学与环境科学学院,华沙红衣主教Stefan Wyszynski大学,wwo ycickiego 1/3 Street,01-938,波兰,波兰,波兰 *通信:
可穿戴电子系统能够监测和测量多种生物物理、生化信号,帮助研究人员进一步了解人类健康以及人类表现与疾病之间的关系。在体育训练、健康监测和疾病诊断需求不断增长的推动下,基于材料科学、结构设计和化学技术的最新进展,生物集成系统正在以惊人的速度发展。各种可穿戴系统被创造出来,具有独特的测量目标和方法以及柔软、透明、可拉伸的特性。本综述总结了可穿戴电子技术的最新进展,其中还包括材料科学、化学科学和电子工程。可穿戴基础知识的介绍涵盖了随后对材料、系统集成和有前景的平台的考虑。还提到了对其物理和化学检测功能的详细分类。充分讨论了实现可拉伸性的策略和有前景的材料 AgNW。本文最后讨论了这一新兴领域面临的主要挑战性障碍,并承诺将开发出具有良好发展潜力的材料。
随着世界为了减轻环境影响,盐构造在实现能源转变目标中的重要性不能被夸大。盐轴承盆地在整个过渡过程中具有巨大的发展潜力。盐盆地可以用作氢,CO 2和废物的储存地点,并在盐体内和周围提供增强的地热能潜力。因此,表征成分的进步,了解内部盐变形,解码盐结构的演变以及理解在操作和放弃洞穴期间盐的行为对于未来的能量过渡至关重要。
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
摘要 - 与普通并发和分布式系统相关联,加密协议的区别是需要推理对手干扰的必要性。我们建议通过可执行的协议语言一种新的驯化方法来驯服这种复杂性,该协议语言不会直接揭示对手,而是执行一组直觉的卫生规则。凭借这些规则,用这种语言编写的协议在没有主动的dolev-yao风格对手的情况下表现出相同的行为。因此,可以通过分析没有对手的状态空间来简化有关协议的正式推理,即使是na've模型检查也可以确定多方协议的正确性。我们介绍了辛辣的设计和实施,即正确实施的安全协议的缩写,包括其输入语言的语义;基本的安全证明,在COQ定理供奉献中正式化;和自动化技术。我们通过少数案例研究对工具的性能和能力进行初步评估。
以限制的氧气运输为突出的特征,水平地下流构建的湿地(HSCW)提出了一种有前途的方法,可以进一步降低废水排放中的氮化合物的水平,尤其是No3 -n -N的水平。
该项目旨在通过鉴定新型生物标志物和新型技术的部署来推进护理点诊断,以开发针对其中独特的表位的纳米体,以实现最高特异性。将通过分析可用的“ OMICS数据”来识别相关的生物标志物,并且已经编制了初步候选名单。纳米体将在学术实验室中使用硅和抗体发现和优化的体外方法的结合。该项目将在Sormanni Lab中开发,探索和采用人工智能(AI)策略,以获取针对预先确定的表位的纳米构造,这些表位在已识别的生物标志物表面是独一无二的[1,2]。然后,将通过体外定向进化方法(例如酵母或核糖体显示)组合来优化此类纳米体的亲和力,这些方法已经在实验室中启动和运行,以及用于预测与亲密关系增加的外生序列的机器学习方法。此外,通过已建立的管道[3],将在计算上进一步优化稳定性和溶解度,因为这些分子特性对于能够开发合适的保质期的侧向流量设备至关重要。
natalia bobkova - Clle,CNRS和ToulouseUniversitéde toulouseJaurèsFabioMonterni - Clle,CNRS和ToulouseJeanJaurès大学摘要本文致力于罗素(Russian)派生形容词中的后缀之间的竞争。,它提出了基于俄罗斯国家语料库的大规模定量分析。它的主要目标是为确定确定这些衍生物中后缀选择的属性做出贡献。俄罗斯的代名词形容词派生使用了各种各样的指数。其中大多数是三个主要后缀的语音变体(扩展)-n-, - SK-和-OV-。后者可以被认为是基本的,构成了我们分析的重点。为这项研究构建了两个数据集,其中一个包含上面的后缀之一,一个更具体的包含Doublet的数据集,即形容词在同一基础上具有不同后缀。通过各种统计模型分析了两组的数据。我们的结果在全球范围内提供了对先前文献中先前进行的观测值的定量确认。特别是,我们表明-n-在俄罗斯的衍生系统中占有特定的位置,因为它的生产力较低,其衍生物倾向于较不透明,并且更容易显示词汇化的含义,这些含义指向朝向定性 - 相关语义谱的定性极点。- SK-和 - OV-更可能形成双重峰(附着在相同的基础上),这是一个进一步的论点,支持它们之间更大的同质性,而不是-n-。关键字:俄语,衍生形态,代表形容词,定量语言学,语料语言学,统计方法的统计方法1.引入俄罗斯名词中形容词的推导是观察和分析词缀竞争的有趣基础。代名词形容词(我们可能在全球范围内将其表征为具有关系价值)实际上可能是通过这种语言来得出的,主要是通过三种不同的后缀 - n-, - sk-和 - ov-或多个变体,基本上扩展了后者的变体。文献中已经进行了几次尝试,以隔离确定选择一个或其他后缀 /变体的因素,以绝对或倾向(参见< / div>)Townsend 1975; Švedova1980; Zemskaja 2015; Hénault&Sakhno 2016等)。 确定的因素包括基本名词和衍生物的语音,形态学,语义和词源特性,或与两者之间关系相关的特性。 然而,除了对小词汇集的一些研究外,仍然缺乏对这种现象的观察。 我们在本文中进行的研究是对俄罗斯代表形容词进行大规模分析的方向的第一步。 我们的主要目标是构建强大的统计模型,以预测相关派生中的后缀的选择。 特别是,我们从俄罗斯国家语料库中构建了两个不同的数据集:一般形容词的一般数据集,其中包含上面列出的主要后缀之一,以及在语料库中遇到的所有Doublet的数据集,即>Townsend 1975; Švedova1980; Zemskaja 2015; Hénault&Sakhno 2016等)。确定的因素包括基本名词和衍生物的语音,形态学,语义和词源特性,或与两者之间关系相关的特性。然而,除了对小词汇集的一些研究外,仍然缺乏对这种现象的观察。我们在本文中进行的研究是对俄罗斯代表形容词进行大规模分析的方向的第一步。我们的主要目标是构建强大的统计模型,以预测相关派生中的后缀的选择。特别是,我们从俄罗斯国家语料库中构建了两个不同的数据集:一般形容词的一般数据集,其中包含上面列出的主要后缀之一,以及在语料库中遇到的所有Doublet的数据集,即形容词在同一底座上用不同的后缀构建。实际上我们将表明的是,对双重组的研究可能会阐明系统的全球动态,特别是当这样的
基于光的投影技术越来越多地用于制造仿生组织。[1–3] 最近,通过激光光束的断层投影,已经可以快速生物制造复杂的细胞结构。[4–6] 然而,在制造肌肉和肌腱等各向异性组织时,大多数光导组织制造策略在有效细胞排列方面的潜力有限[7,8],因为大多数方法都侧重于宏观特征(> 100 μ m),而这些特征缺乏这些组织中高度排列的细胞和细胞外组织所必需的地形线索。对于可以实现细胞级(< 30 μ m)分辨率的双光子聚合和超高分辨率数字光处理等技术,非相干光源将光聚合限制在小范围(< mm)内发生,而这需要逐层策略才能实现大型组织工程结构的制造。 [1,9,10] 速度和可扩展性的折衷限制了这些方法的转化潜力。指导性线索(如纤维成分以及纤维和挤压式生物打印的组合)已被广泛研究,因为它们具有促进细胞排列和排列组织工程结构成熟的潜力,如肌肉、肌腱、神经和软骨组织。[7,11–14] 研究表明,长宽比增大的拓扑线索会影响基底内/上细胞的生物活性。例如,通过微流体或软光刻制备的棒状微凝胶(长宽比为 10)能够增加细胞取向,与微球相比,高长宽比微棒之间的空隙可以更好地实现细胞取向。[15,16] 通过微图案化技术创建的具有超高长宽比(> 20:1)的拓扑特征可以有效诱导细胞粘附和排列。 [17,18] 尤其是当限制的尺寸接近细胞核的尺度(<10μm)时,这些纵向限制导致的核变形变得明显。细胞核的细长形状可以影响细胞分化、基因表达和再生,后者通过染色体重组和激活 DNA 修复机制来实现;[19,20]