图7显示了这些生产模式的比较,假设有2030年的电解和天然气的成本和效率。在电解途径中,电解工厂的利用率对成本敏感性具有物质影响。在较低的利用率下,由于资本回收率较低而导致的平均成本增加。较高的利用率需要通过网格连接或可再生能源的全天候供应来持续供电。(印度的电网电力很可能涉及从燃煤电厂中汲取电力,因此“绿化”生产过程需要购买可再生能源证书。这使网格电力模式更加昂贵。)
桃(Perrunus persica)Landrace具有典型的区域特征,强大的环境适应性,并包含许多有价值的基因,为繁殖优秀品种奠定了基础。因此,有必要组装特定陆地的基因组,以促进这些基因的定位和利用。在这里,我们从头组装了一个来自中国北平原的古老血液中国兰德·舒伊米(TJSM)的高质量基因组。组装的基因组大小为243.5 MB,重叠元素N50为23.7 MB,支架N50为28.6 MB。与报道的桃基因组相比,我们组装的TJSM基因组具有最大数量的特定结构变体(SVS)和长时间重复返回转树(LTR-RTS)。有可能调节其宿主基因的潜力,我们在NAC转录因子编码PPBL的启动子中鉴定了6688 bp ltr-rt(命名为IT血液TE),这是一种调节乳头的基因PPBL。血液不仅与血液表型共分离,而且还与果实成熟日期的进步和血液形成的不同强度有关。我们的发现提供了有关血液颜色发展和确定水果成熟日期的基础机制的新见解,并突出了TJSM基因组对桃子水果中的农艺性状相关的更多变化的潜力。
引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
摘要 番茄 (Solanum lycopersicum L.) 是一种商业化种植的蔬菜,属于茄科,是继马铃薯 (Solanum tuberosum L.) 和洋葱 (Allium cepa L.) 之后第三大重要蔬菜。番茄因其新鲜果实和加工酱汁而被种植,全球产量超过 1.53 亿公吨。然而,现代番茄品种的糖、酸和挥发性等位基因多样性有限,因为在育种计划中,风味通常不太受重视。转化酶是番茄风味和糖代谢的重要调节剂。如果不清楚转化酶和蔗糖代谢的作用,番茄风味的遗传控制仍然不完整。本综述概述了我们目前对转化酶在蔗糖代谢中的作用方式、它们在番茄基因组中的进化和功能差异、在应激反应中的作用、水果风味和品质的遗传和激素控制的理解。我们总结了转化酶在糖代谢和水果风味中的主要作用。
北京中国农业科学院遗传学家领导的团队利用 CRISPR-Cas9 技术识别了番茄品种 Solanum lycopersicum 中控制糖含量的一对基因:钙依赖性蛋白激酶 27(SlCDPK27 或 SlCPK27)及其同源物 SlCDPK26。研究人员称,这些基因通过降解负责蔗糖生产的酶,充当番茄的“糖制动器”。只需使这两个基因失活,新品种的果实中的葡萄糖和果糖含量就会比普通的大规模生产番茄高出 30%。更重要的是,这样做不会导致果实大小或总量发生可测量的变化。基因改变不会降低产量,他们发现的唯一其他差异是番茄产生的种子更少,而且更小。他们认为消费者可能会喜欢这个附加功能。
目的:由于其营养丰富的好处,观赏价值和药用特性,大百年来已使用了数个世纪。伊朗是最大的无种子凉棚生产国,在气候干燥,土壤条件差和严重的水短缺的各个地区,这种生产商一直在增长。替代轴承是无种子烟草生产中的常见问题。为了避免这种情况,稀疏已被用作果园管理中的一种常见文化实践。研究方法:在这项研究中,在75、100和150 mg/l的三个化学稀释剂中,包括50、20和40 mg/l的萘乙酸(NAA),在50、20和40 mg/l和ethephon和ethephon和ethephon和ethephon和ethephon和ethephon in 50、100和200 mg/l,以及在Birjand,iran of birjand fall中应用了一个商业化的(20%)。稀疏率,定量和定性性状与在2015年和2016年期间随机完整块设计中的拆分图中进行了研究。的发现:结果表明,NAA在10 mg/L时导致最高的果实脱落。营养性状,例如芽的长度,每芽的叶子数量和叶片面积在处理下显示出显着增加,而芽直径与对照没有显着差异。化学稀疏可显着增强芽的淀粉和糖,尤其是在“ On”年(2015年)。在对照中观察到“关闭”年中的最小叶绿素含量在10 ppm中最高。所有治疗方法都会在“ Off”一年(2016年)中增加无种子的牛奶灌木产量。研究局限性:未遇到限制。生化特征,例如抗坏血酸,总可溶性固体,可滴定的酸度和花色苷。独创性/价值:为了避免在无种子的牛bar灌木中替代替代方案,稀疏被用作果园管理中的一种常见文化实践。因此,建议使用NAA 10 mg/L的应用以控制替代轴承和更好的水果质量。
番茄 ( Solanum lycopersicum ) 是一种全球性种植的作物,具有巨大的经济价值。外果皮决定了番茄果实的外观,并在收获前和收获后保护其免受各种生物和非生物挑战。然而,目前还没有番茄外果皮特异性启动子,这阻碍了基于外果皮的基因工程。在这里,我们通过 RNA 测序和逆转录-定量 PCR 分析发现番茄基因 SlPR10 ( PATHOGENESIS RELATED 10 ) 在外果皮中大量表达。由 2087-bp SlPR10 启动子 ( pSlPR10 ) 表达的荧光报告基因主要在 Ailsa Craig 和 Micro-Tom 品种的转基因番茄植株的外果皮中检测到。该启动子进一步用于番茄中 SlANT1 和 SlMYB31 的转基因表达,它们分别是花青素和角质层蜡质生物合成的主要调节因子。pSlPR10 驱动的 SlANT1 表达导致花青素在外果皮中积累,赋予果实抗灰霉病和延长保质期,而 SlMYB31 表达导致果皮蜡质增厚,延缓水分流失并延长果实保质期。有趣的是,pSlPR10 和另外两个较弱的番茄外果皮优先启动子在转基因拟南芥 (Arabidopsis thaliana) 植物的子房中表现出一致的表达特异性,这不仅为番茄外果皮和拟南芥子房之间的进化同源性提供了线索,而且为研究拟南芥子房生物学提供了有用的启动子。总的来说,这项研究报告了一种理想的启动子,能够在番茄外果皮和拟南芥雌蕊中实现靶基因表达,并证明了其在番茄果实品质遗传改良中的实用性。
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
随着果树作物品种的驯化和改良,果实大小也发生了显著的进化。在番茄 (Solanum lycopersicum) 中,CLAVATA-WUSCHEL 信号通路基因的自然发生顺式调控突变导致果实大小显著增加,产生增大的分生组织,从而使花长出额外的器官,果实也更大。在这项工作中,通过结合测序定位和 CRISPR/Cas9 基因组编辑方法,我们分离出了一种调控花分生组织活性的 AP2/ERF 转录因子——过多花器官 (ENO)。因此,ENO 基因突变会导致植物因花分生组织增大而产出更大的多室果实。遗传分析表明,eno 与 LOCULE NUMBER(编码 SlWUS )和 FASCIATED(编码 SlCLV3 )基因座的突变表现出协同效应,这两个基因座是栽培番茄驯化过程中果实大小进化的关键因素。我们的研究结果表明,eno 突变会以花特异性的方式导致 SlWUS 表达域的大幅扩增。体外结合结果表明,ENO 能够与 SlWUS 启动子区内的 GGC-box 顺式调控元件相互作用,表明 ENO 直接调控 SlWUS 表达域以维持花干细胞稳态。此外,对 ENO 基因座自然等位基因变异的研究证明,ENO 启动子中的顺式调控突变在驯化过程中受到了正向选择的靶向,为现代番茄果腔数量和果实大小的大幅增加奠定了基础。
作者负责根据作者24(https://academic.up.com/plphys/pages/pages/general-instructions)中描述的政策在23篇文章中不可或缺的材料分配的作者。25