摘要:亚马逊雨林是物种数量和众多的近卫生关系中的超多样性生态系统。为了表征占主导地位和经济重要的亚马逊物种,巴西坚果树(Bertholletia Excelsa Bonpl。),在基因组水平上,从单个个体的叶子中引发了高覆盖的长阅读测序数据。基因组组装揭示了一个意外的发现:两个可以分配给染色体的圆形重叠群和pantoea stewartii菌株的质粒。比较基因组学表明,该菌株属于独立元素亚种,并与从新热带棕榈bactris gasipaes kunth的患病叶片中分离出的其他菌株高度同步。对致病性相关基因的研究揭示了质粒中没有整个III型分泌系统基因簇,质粒否则与已知在Dracaena Sanderiana Mast中引起疾病的分离物的质粒高度相似。相反,检测到与植物生长有关的几种基因,包括参与吲哚-3-乙酸(IAA)产生的基因,磷酸盐溶解和辅助载体的生物合成。总而言之,我们报告了未经培养的Stewartii亚种的基因组。与巴西坚果树相关的植物菌株,并可能是植物生长的细菌。
1 中国农业大学食品科学与营养工程学院果树生物学实验室,北京,中国 2 浙江大学农学与生物技术学院,杭州,中国 3 华南农业大学园艺学院,亚热带农业生物资源保护与利用国家重点实验室/广东省果蔬采后科学重点实验室,广州,中国 4 北京工商大学食品与化学工程学院,北京,中国 5 英国诺丁汉大学生物科学学院植物科学系,萨顿博宁顿校区,拉夫堡,英国 6 萨格勒布大学农学院果树学系,克罗地亚萨格勒布 7 加利福尼亚大学植物科学系,戴维斯,加利福尼亚州 95616,美国 8 美国农业部农业研究服务处作物病理学和遗传学研究中心,戴维斯,加利福尼亚州 95616,美国
使用开放式凹口时,将钻孔切(有时称为跌落量)创建铰链,这是对树的适当厚度。如果树的直径为24英寸或更小,则铰链铰链被移除后剩余的树材材料的10%。如果树的直径大于24英寸,则铰链在去除凹口后应为剩余树材料的5%。如果您不熟悉钻孔,请在解决一棵站立的树之前练习。铰链应在整个树的整个直径上均匀厚。这棵树将由后皮带固定在适当的位置。切开后皮带(或点击楔形),并立即沿着预先清除的逃生路线逃脱。如果使用常规档位,请在树开始移动后立即进行后退并使用逃生路径。如果正确遵循所有五个步骤,则树将保持在铰链处的树桩上,并在您在逃生路线上安全移开时沿着预期的路径落下。
茨城县、栃木县、群马县、埼玉县、千叶县、东京都、神奈川县、山梨县、长野县、静冈县 水田 5 (4, 1, --, --) 大田作物 1 (-, 1, --, --) 露天蔬菜 13 (2, 2, 4, 5) 温室园艺 6 (2, 2, --, 2) 果树 7 (2, 2, 1, 2) 花卉 1 (-, --, --, 1) 茶 2 (1, --, --, 1) 畜牧业 2 (1, 1, --, --) 合计 37 (12, 9, 5, 11)
新型植物育种技术 (NPBT) 旨在突破果树品种的传统育种限制,以获得感官性状改良、抗生物和非生物胁迫的新品种,并通过(克隆)选择保持数百年来的果实品质。了解控制特定性状的基因对于 NPBT 的使用至关重要,例如基因组编辑和同源杂交。在研究包括柑橘在内的果树品种的国际科学界框架内,NPBT 主要用于应对病原体威胁。柑橘可以利用 NPBT,因为它具有复杂的物种生物学(无籽、无融合生殖、高杂合性和长幼期)和体外操作能力。据我们所知,通过转基因对柑橘进行基因组编辑已成功利用抗性基因 CsLOB1 在甜橙和葡萄柚中诱导出对柑橘细菌性溃疡病的抗性。未来,NPBT 还将用于改善果实性状,使其更健康。应用 NPBT 后植物的再生是一个瓶颈,因此有必要优化当前协议的效率。我们将讨论使用来自幼小的离体植株和成熟植株的外植体的优缺点。本综述中讨论的其他主要问题与对无标记系统的要求以及缩短漫长的幼苗期有关。本综述旨在总结文献中适用于柑橘的方法和途径,重点关注使用 NPBT 之前观察到的原则。
痢疾和疟疾等疾病是由原生动物引起的。癣是由真菌引起的。几个微生物会导致植物中的疾病,从而降低产量。柑橘溃疡,一种细菌疾病,会影响柑橘类水果树,并通过空气传播。Bhindi黄色静脉镶嵌性疾病是由病毒引起的,是由昆虫用夫人的手指传播的。小麦的锈蚀是一种真菌疾病。在我们食物上生长的微生物有时会产生有毒物质。这些使食物有毒导致严重疾病甚至死亡。这种食物疾病称为食物中毒。
古生物学家说,胡桃属(坚果)物种的出现可以追溯到中生代白垩纪中期(约1亿年前),在此期间地球的植物群发生了变化,出现了开花植物。古植物学家对植物遗骸的研究表明,胡桃果树的发展与古近纪(6700万年前,其持续时间为4200万年)相吻合,特别是在新生代的新近纪(2500万年前,其持续时间为2300万年)被发现广泛分布。自然,根据一些科学家的说法,它们生长在欧洲,亚洲和北美洲。在这个古老的地质时期,地球上为植物的生长和发育创造了有利条件[1-8]。
我们知道,尤其是在地中海的水果生产将需要适应气候变化,以确保基于果树的农业生态系统的可持续性。但是,缺乏关于这种变化对可持续性指标的长期影响的证据。为了填补这一空白,我们使用了质量的果树模型来分析苹果园在法国东南部提供的生态系统服务的影响。为此,对盛开的模型进行了参数,以根据气候数据模拟开花日期,并补充了树木中的氮过程模型和描述资源输入(灌溉,矿物质和有机体)的土壤模块的模型,土壤(水和硝基化)和氮化转化(nitrogen and Nitrogen and Nitrofiation-immobialization-immobialization(Mimmobialization)(分析)(分析),分析。这种类型的扩展可以模拟各种各样的生态系统服务,包括C固换,硝酸盐浸出和一氧化二氮排放。该模型与法国东南部苹果园的数据进行了比较。预测的每日均值和果实生长时间,成分和土壤含水量的变化与观察到的数据一致。然后,使用质疑来评估气候变化对苹果园提供的生态系统服务的潜在影响。为此,为三种对比的温室气体排放场景生成了从2020年到2100的天气变量,并在两个灌溉方案(无限制和限制使用水)下进行了模拟。模型输出表明,平均而言,可销售的苹果收益率将在2050年之前增加,然后随后减少。水果折射率指数是水果质量的指标,预计随着气候变化的强度而大大降低。生态系统服务,例如果园的C续集,随着气候变化的严重程度的降低,主要是由于土壤腐殖质的矿化较高,而N 2 O的排放量会随着较大的反硝化速率而增加。土壤水的利用率,生育能力,排水和浸出的预计将更多地取决于灌溉策略,而不是气候变化的严重程度。在质量上执行的新功能扩大了其预测能力,并允许在不同的气候条件下更好地了解水果果园中的生态系统服务。