计划 2023 财年估计 社区森林和开放空间 $0 合作土地 - 森林健康管理 $50,000 森林遗产 $0 森林管理 $100,000 景观规模恢复 $0 州消防援助 $60,000 城市和社区林业 $100,000 志愿消防援助 $0 总计 $310,000 注:这笔资金用于州内所有实体,而不仅仅是州林务员办公室。 马绍尔群岛共和国 (RMI) 由 29 个环礁、五个孤岛和约 1,225 个独立岛屿和小岛组成。群岛网络包含 70 平方英里的陆地,位于夏威夷和澳大利亚中间。所有马绍尔群岛的海拔都很低;陆地平均高出海平面 7 英尺。2021 年 7 月,人口估计为 78,831 人。超过三分之二的人口生活在马朱罗和埃贝耶环礁上。马绍尔群岛有五种独特的植被类型:环礁森林、红树林、沿海植被、咸水水生植被(生长在沿海潮滩上的海草)和栽培植被(农林)。自马绍尔人定居以来的数千年间,大部分内陆环礁森林都已转变为农林业。马绍尔的农林业是树木、木本灌木和草本植物的混合体,用于种植食物和其他林产品,尤其是面包果、椰子、露兜树和香蕉。自西方接触以来,许多地区都被管理为椰子种植园(占土地覆盖率的 70%),并且其他物种已被引进并融入农林业(尤其是果树)。自然资源和商业部 (MNRC) 由许多部门和计划组成,包括负责制定和实施林业计划的农业司。马绍尔群岛研究所林务员为农业部工作,并与马绍尔群岛学院和沿海管理咨询小组等各种合作伙伴合作。沿海管理咨询小组履行协调委员会和城市与社区林业委员会的职责。MNRC 与各种合作伙伴和利益相关者合作,提高林业计划实施的效率。计划目标
Barbarash, David M. 数字景观表现 dbarbara@purdue.edu Bigelow, Cale A. 草坪科学;土壤特性和草坪草营养 cbigelow@purdue.edu Bilenky, Moriah 可持续园艺 mbilenky@purdue.edu Bressan, Ray 应激生理学 bressan@purdue.edu Dudareva, Natalia 植物生物化学和分子生物学 dudareva@purdue.edu Gómez, Celina 受控环境农业、水培、植物繁殖 cgomezva@purdue.edu Guan, Wenjing 蔬菜和甜瓜作物生产 guan40@purdue.edu Hallett, Steve 可持续农业 halletts@purdue.edu Handa, Avtar 采后和分子生物学 ahanda@purdue.edu Hirst, Peter 果树栽培学 hirst@purdue.edu Hoagland, Lori 特色作物生产系统 lhoaglan@purdue.edu Huang, Yiwei 景观性能和景观生态学 huan1655@purdue.edu Langenhoven, Petrus 生产园艺 plangenh@purdue.edu Li, Ying 功能基因组学;植物对环境的反应 li2627@purdue.edu Maynard, Elizabeth 可持续蔬菜生产 emaynard@purdue.edu Meyers, Stephen 特种作物杂草科学 slmeyers@purdue.edu Mickelbart, Mike 园艺/植物生理学 mmickelb@purdue.edu Mitchell, Cary 受控环境农业 cmitchel@purdue.edu Nemali, Krishna 受控环境农业;水培法、室内农业、花卉栽培 knemali@purdue.edu Orvis, Kathryn 园艺 / 青少年教育 orvis@purdue.edu Patton, Aaron 草坪草管理系统、草坪杂草科学 ajpatton@purdue.edu Percevault, Erin 景观建筑 eperceva@purdue.edu Porterfield, D. Marshall 受控环境农业 porterf@purdue.edu Prokopy, Linda 园艺社会科学 lprokopy@purdue.edu Raghothama, KG 植物营养分子生物学 kgraghoth@purdue.edu Rotar, Sean Michael 美国景观史、设计教学 srotar@purdue.edu Siciliano, Paul C Jr 景观建筑史与理论、普渡大学植物园 sicilian@purdue.edu Thompson, Aaron 土地利用规划的人性化、生态化和空间化 awthomps@purdue.e Torres, Ariana 特色作物营销 torres2@purdue.edu Varala, Kranthi 植物非生物胁迫;系统生物学 kvarala@purdue.edu Widhalm, Joshua 植物天然产物代谢 jwidhalm@purdue.edu
将易感农作物植物植物和耐虫害的茎植物是一种有价值的管理实践,可减少全球植物性寄生虫和植物病原体造成的损害。抗甲酸中的耐药根可广泛用于嫁接番茄,茄子和胡椒作物,以控制多种疾病和线虫。已经开发出耐药的甲壳虫根stocks,用于嫁接西瓜,黄瓜,Luffa和Melon。几种果树种类(包括易感柑橘,苹果和橄榄)被嫁接在耐药的砧木上,尤其是用于管理土壤传播疾病和植物 - 寄生虫线虫。嫁接是土壤熏蒸的一种广泛使用的替代品,也是控制土壤传播疾病和线虫害虫的其他农药。Rootstocks of several crops have been developed with speci fi c resistance(s) to soil-borne diseases and plant-parasitic nematodes, including Verticillium wilt, Fusarium wilt, Fusarium crown and root rots, Southern blight, bacterial wilt, Huanlongbing (HLB), Phytophthora root rot, citrus tristeza virus, citrus Canker(Xanthomonas axonopodis),Meloidogyne Incognita,M。Arenaria,M。Javanica和Apple Repleant疾病(phytophthora,Pythium,Pythium,Cylindrocarpon和Rhizoctonia spp。与根神经线虫相互作用,Pratylenchus渗透性)。南部的根管线虫(M. inognita)易感番茄在线虫 - 耐药根上嫁接可降低根的腐蚀和增加的产量(Kunwar等,2015; Frey等,2020)。Meloidogyne Incognita会导致西瓜中的根,植物发育迟缓和果实产量降低。在耐药根stock上敏感的西红柿易受细菌枯萎病(ralstonia solanacearum)的果实,其果实产量高88%至125%(Sostoff等,2019)。野生西瓜根stocks对南部的根管耐药性具有
摘要:草莓育种始于15世纪,西欧的欧洲草莓物种的选择和种植,随后在智利进行了类似的发现和种植。当今最受欢迎的草莓种类是花园草莓,这是两个不同物种的混合体,带有科学名称Fragaria Ananassa。但是,有许多草莓品种,其中有些在某种程度上耕种。草莓物种根据其拥有的染色体数量分为许多遗传子类别。多年来,草莓农民采用了各种繁殖技术,从传统的植物繁殖开始,然后转向20世纪的分子繁殖和基因工程。在本评论文章中,讨论了有关草莓育种中使用的各种育种技术。但是,草莓生产存在许多障碍,这给全球的科学家带来了压力,以制定新的适应策略,以满足对高质量草莓生产的不断增长的需求。害虫和疾病以及极端天气的压力是对草莓生产的最大威胁。要解决其中一些问题并满足消费者对水果质量的需求,已经创建了品种。水果质量的总体可接受性是确定育种计划成功的关键因素,因为大多数发达的品种具有理想的特征,例如对生物和非生物压力的抗性,因此无法商业化,并且由于其质量差而无法在商业环境中生长。许多因素,包括长期少年,身材高,环境压力和高杂合性,阻碍了水果作物质量的改善。提高特定理想特征是一项挑战,因为水果作物的质量特征是多基因的,并且由许多基因控制。尽管多年生水果作物巧妙地忽略了这个问题,但已经尝试了许多尝试改善年度作物的定性特征。因此,使用传统和当代繁殖技术的结合可以帮助解决这些问题。处理费力的水果作物,生物技术和分子方法(如标记辅助选择,转基因,基因组编辑,基因组成因基因和候选基因)提供准确性和可靠性,以缩短繁殖周期。本评论的主要主题将是水果育种的困难以及各种育种方法的现状,以改善果树的水果质量。
在2024年8月28日至2024年12月12日,加利福尼亚州粮食和农业部(CDFA)之间,《地中海果实的宣告宣告紧急计划的修正案》证实,有70种成人地中海果蝇(Medflies),Ceratisitis Ceratitis capitata Capitata(Wiedemann)(Wiedemann)(Wiedemann)(Wiedemann)是弗雷曼(Countar)的Neward and and and and and and and and and and and and and and and and and and and and and and and and and and and and。此外,已经证实三种特性上的果树被幼体药物感染。基于这些检测,有害生物学,来自CDFA地中海果蝇科学咨询小组(MEDSAP),主要国家昆虫学家的信息以及CDFA的“地中海果蝇Ceratisis capitata(Wiedemann)的行动计划”,CDFA的结论是,CDFA的结论是,该地区的疾病是该地区的疾病。这种害虫对加利福尼亚的自然环境,农业和经济构成了重大,清晰和迫在眉睫的威胁。除非采取紧急行动,否则在阿拉米达和圣塔克拉拉县突然发现未来的发现很高。根据综合的害虫管理原则,CDFA评估了可能的根除方法,并确定没有可以消除该领域的Medflies的文化方法。这项紧急计划的宣告有效期至2025年8月15日,这是Medfly治疗方案要求执行MedFly三个生命周期的治疗计划所需的时间。CDFA将采用生物学和化学控制作为主要工具,并在有证据表明物业上存在繁殖种群时,还将通过宿主水果去除物理控制。对上述药物的检测需要立即采取行动,以应对对加利福尼亚自然环境,农业和经济的迫在眉睫的威胁。更具体地说,除了多种商业作物外,Medfly还威胁着对本地野生动植物,私人和公共财产以及食品供应的损失和损害。,由于2024年8月28日至2024年12月12日之间发现的Medflies的生命周期尚未发生,因此在阿拉米达和圣克拉拉县突然发现未来的检测可能很高。因此,秘书正在援引公共资源法第21080(b)(4)条,以立即采取紧急行动,以防止上述损失和对加利福尼亚资源的损失。Medfly侵扰的治疗计划将如下实施:
地中海果蝇紧急计划公告修正案 2024 年 8 月 28 日至 2024 年 12 月 18 日,加州食品及农业部 (CDFA) 确认,在阿拉米达县的弗里蒙特、纽瓦克和联合城共捕获了 71 只成年地中海果蝇 (Medflies) Ceratitis capitata (Wiedemann)。此外,三处土地上的果树已被确认受到地中海果蝇幼虫的侵扰。根据这些检测、害虫生物学、来自 CDFA 地中海果蝇科学咨询小组 (MedSAP) 的信息、州一级昆虫学家以及 CDFA 的“地中海果蝇 Ceratitis capitata (Wiedemann) 行动计划”,CDFA 得出结论,该地区存在地中海果蝇的侵扰。这种害虫对加州的自然环境、农业和经济构成了重大、明显和迫在眉睫的威胁。除非采取紧急措施,否则阿拉米达县和圣克拉拉县未来很有可能突然发现这种害虫。根据综合害虫管理原则,加州食品和农业部评估了可能的根除方法,并确定没有可用于从该地区消灭地中海果蝇的文化方法。此紧急计划公告有效期至 2025 年 8 月 15 日,这是根据地中海果蝇治疗方案的要求,在地中海果蝇的三个生命周期内实施治疗计划所需的时间。加州食品和农业部将采用生物和化学控制作为主要手段,并在有证据表明某处土地上存在繁殖种群时,通过移除寄主果实进行物理控制。发现上述地中海果蝇需要立即采取行动,以应对对加州自然环境、农业和经济的迫在眉睫的威胁。更具体地说,除了各种经济作物外,地中海果蝇还威胁着当地野生动物、私人和公共财产以及食品供应的损失和损害。由于在 2024 年 8 月 28 日至 2024 年 12 月 18 日期间发现的地中海果蝇的生命周期尚未结束,因此未来在阿拉米达县和圣克拉拉县突然发现地中海果蝇的可能性很高。因此,部长援引《公共资源法典》第 21080(b)(4) 条采取紧急行动,以防止上述损失和加州资源受损。地中海果蝇侵扰的治疗计划将按以下方式实施:
i) 选择合适的、孤立的地理位置,并考虑风向,以利于卫生和疾病控制。该场所应设有安全围栏和大门,以控制交通和进出。入口处应张贴限制进入的标志。ii) 家禽养殖场所应为单一目的、单一品种的企业,理想情况下,应尽可能采用全进全出单一年龄组原则。iii) 如果一个场所饲养多只鸡群,则应将各个鸡群作为单独的实体进行管理。iv) 饲养家禽的建筑物或用于储存饲料或鸡蛋的建筑物应无害虫,野鸟无法进入。v) 禽舍的建造应使建筑物内的所有表面都采用不透水的光滑材料,以便充分进行清洁和消毒。vi) 禽舍周围的区域应没有植被和杂物,理想情况下应由混凝土或其他类似材料组成。例外情况是用于控制温度的树木,但可能对鸟类具有吸引力的果树除外。vii) 不应允许家畜进入禽舍。viii) 应为所有访客和进入单个禽舍的所有工作人员采取适当的疾病安全预防措施,包括淋浴和更衣设施。ix) 当禽舍或禽舍的禽鸟数量减少时,应清除禽舍中的所有粪便并采用有效的清洁和消毒程序。建议对消毒程序的有效性进行细菌学监测。必要时,还应执行啮齿动物和昆虫控制程序。x) 禽舍或禽舍的重新繁殖应仅从已知健康状况良好的禽群中进行,并定期监测其是否含有沙门氏菌和其他禽类病原体。xi) 禽舍和禽舍中使用的所有饲料在使用前都应进行沙门氏菌监测。建议使用颗粒饲料或经过其他沙门氏菌净化程序的饲料。饲料应存放在干净的密闭容器中。 xii) 禽舍的供水应达到令人满意的饮用标准。xiii) 应尽快将病禽和死禽从禽舍中移出,并实施有效的处置程序。xiv) 应在企业内以单个禽群为基础保存有关死亡率、疾病诊断、治疗和疫苗接种的完整记录。此类记录应随时可供查阅。
国际农业研究中心咨询小组技术咨询委员会的分析(估计 1987-88 年糖是发展中国家第十四大重要作物,总产值超过 73 亿美元。在澳大利亚,它是第三大重要作物,1994-95 年产值约为 17 亿澳元。糖在发展中国家和澳大利亚的重要性使其成为在澳大利亚国际农业研究中心 (ACIAR) 的支持下进行合作研究和开发的适当重点。澳大利亚工业以进口种质为基础,没有本土甘蔗品种,这进一步强调了国际合作对澳大利亚的重要性。澳大利亚糖业一直对支持国际科学合作持谨慎态度。自 1982 年以来,ACIAR 一直仅资助了一个关于糖的合作项目,评估菲律宾糖生产和营销的政策选择。然而,近年来,行业热情高涨,ACIAR、糖研究与发展公司和糖实验站局在 1994 年的一系列会议上讨论了促进这种合作的机会。会议决定,由于种质交换在全球甘蔗产业发展中的重要性以及最近在种质中心和交换的种质中发现新的病毒疾病,应就甘蔗种质的安全管理和国际交换举行一次研讨会。本论文集中报道的这次研讨会于 1995 年 6 月 28 日至 30 日在澳大利亚昆士兰州布里斯班附近举行。由 Barry Croft、Mac Hogarth、Peter Whittle、Bob Dodman、Eoin Wallis 和 Colin Piggin 组成的委员会组织了这次研讨会。Ted Henzell 也为研讨会的组织和运行提供了很大的帮助。来自澳大利亚(21 人)和海外(14 人)的人员出席了会议,提交了论文并参与了与甘蔗种质的收集、特性、保护、清理和交换有关的一系列问题的讨论。通过国际香蕉和大蕉改良网络对香蕉、澳大利亚诺克斯菲尔德园艺发展研究所对马铃薯、美国马里兰州贝尔茨维尔对果树的几个成功案例研究,加强了对无性繁殖物种相关问题的考虑。出色的组织、Clearview Mountain 壮观而美丽的地理位置以及参与者的热情和专业知识,所有这些都共同促进了研讨会的积极气氛。在三天内,我们回顾了甘蔗交换和检疫方面的现有知识和经验,并制定了解决主要制约因素的行动计划。成果包括基于现有知识的种质保存、交换、检疫和保存建议,以及确定未来研究和开发的优先事项,包括国际合作机会。本会议记录中介绍了研讨会的论文和成果摘要。预计这些将提供背景信息,以开发和寻求支持一系列与糖种质保存、交换和使用有关问题的合作研究、开发和培训项目。
引言正在进行的全球变暖已经在改变植物物种的生长和地理分布(Doblas-Miranda等,2017; Vellend等,2017)。鉴于当前的快速变暖速率,预计全球温度将在2030年至2050年之间升高 +1.5°C(IPCC,2018年)。气候变化对自然生态系统的影响会导致植物物种地理分布范围的扩张,减少或变化(Lenoir等,2008)。因此,这些影响可能会对陆生能,水通量以及CO 2排放产生重大影响(Forzieri等,2020)。此外,这种变暖正在影响各个层面的生物多样性,从个人和社区到整个生态系统(Franklin等,2017)。在地中海地区观察到的,自然生态系统特别受到全球变暖和极端气候事件的影响(Doblas-Miranda等,2017; Lionello and Scarascia,2018)。因此,在预计的气候变化情景下对植物物种的地理分布的理解非常感兴趣(Franklin等,2017),特别是对于制定适应性良好的保护和管理计划的发展(Kozak等,2008)。评估植物物种对气候变化的脆弱性,物种分布模型(SDM)通常被越来越多地使用。这些模型通过基于环境因素插值和推断其分布来预测物种的地理范围(Guisan等,2017; Pecchi等,2019)。此外,物种分布模型为自然资源的保护和管理提供了全面的基础(Sinclair等,2010; Qin等,2017)。当前,有许多可用的SDM方法,例如Bioclim(Bioclimatic建模),域(域环境包膜),GAM(广义加性模型),MARS(多变量自适应回归光谱)和Maxent(Maxtainter(Maximak)(最大值)(Pecchi等人,2019年)。中,Maxent算法(Phillips等,2006)在提供仅存在的数据时提供了可靠的适合性结果,并且在处理广泛分布和稀有物种的出现方面具有很高的灵活性(Elith等,2006; Moukrim等,2019; Kassout等,2019; Kassout等,20222a)。例如,最大的熵模型已用于预测宏观生态模式(Harte,2011年),物种丰度分布(White等,2012),基于特质的社区组装(Shipley等,2011)和物种生态位模型在多个尺度上(Elith等,2010; Guisan等,2017,2017年)。Ceratonia Siliqua L.(豆科植物)是一种常绿,嗜热和二元的地中海果树(Batlle和Tous,1997; Baumel et al。,2018; Kassout等,2023),有一些稀有的Hermaphrodite和单调的案例(Batle and Batle和Toble和Tous)(1997)。Cacob(C。C. silliqua)是一棵缓慢生长的长树,对干旱具有很高的抵抗力,但对极度寒冷的抵抗力有限(Batlle和Tous,1997),这有助于其重要的遗传多样性(Viruel等,2019)和
摘要菌根是绿色植物与真菌之间的共生关联。进行了当前的研究,以评估羊膜菌根真菌(AMF)接种对小麦植物种子生长的影响。Triticum Aestivum。在本实验中,用AMF殖民的根被用作注射源。小麦种子被注入这些根,并与其他没有对照注射的种子进行了比较。允许注射的植物和未感染的植物生长75天。在此期间,在三个时期收获了25、50和75天的植物。通过该实验,发现AMF通过对该宿主植物的种子的生长产生积极影响,对小麦作物的生长具有很高的效力。在利比亚,此类AMF的研究仍然很少见,因此我们试图跟进先前的研究,因此我们研究了与利比亚和世界上经济上重要的农作物的这种共存。引用本文。Fheel Alboom H,Khalleefah M,Mansour N,Abounqab A.羊膜菌根真菌对小麦植物生长的影响。Alq J Med App Sci。2024; 7(4):1153-1158。 https://doi.org/10.54361/ajmas.247435简介菌根真菌与它们之间与大多数植物的根部形成一种共生的类型,因为菌根真菌与地球表面上大多数植物的根部相关联,因此[1,2]。真菌菌丝和植物根之间的共生是最常见的共生类型之一[3,4]。由菌根真菌定植的植物称为宿主植物。这些植物包括草药,经济作物以及一些树木,尤其是果树和灌木。植物称为非宿主植物(非宿主植物)[5]。这些真菌在没有宿主植物的情况下无法完成其生命周期,因此在没有宿主植物的情况下,在实验室的人工环境中不能生长或孤立,与某些类型的菌根不同,可以在营养培养基上种植[6,7]。迄今已确定了七种类型的菌根,形成这种关系的真菌属于Ascomycotina,basidiomycotina和glomeromycotina Fungi。菌根真菌最重要的类型是Arbuscular菌根真菌(AMF),它因其对小麦幼苗生长的有效性而被突出显示[8,9]。AMF是自然界中最常见和最普遍的类型,因为它们与80%以上的血管植物建立了共生关系。这些真菌属于独立的分裂肾小球,其特征是在宿主植物根部的皮质细胞内形成(囊泡)和(arbuscules)[10]。真菌菌丝不被横向屏障划分,并通过机械压力或酶在宿主植物根细胞的细胞壁上的机械压力或分泌来渗透宿主的根,并进入表皮细胞之间,它们在