摘要 - 在高等教育中,培养鼓励学生参与现实世界挑战的环境对于专业发展至关重要。这一原则为我们与第八学期纳米技术工程专业学生的合作努力支撑。通过创新的方法,例如合成结合菠萝果皮的聚合物纤维,我们解决了环境问题并利用菠萝废物的未开发潜力。菠萝行业每年产生大量的非利用废物,主要是茎,牙冠和果皮,占整个水果的67%。菠萝果皮富含生物活性化合物(如多酚)对化妆品行业的应用有望,如果将它们纳入合适的输送系统中,则可能会增强产品(例如提拉配方)。在目前的工作中,使用商业挤出机合成了装有10%,20%和30%菠萝果皮粉(PP)的聚乳酸(PLA)和多碳酸酯(PCL)纤维。傅立叶变换红外和差异扫描量热法证实了由于形成了新的化学键和相互作用的有效PP掺入纤维中。使用扫描电子显微镜(SEM)进行的形态表征表明,纤维的横截面长度从3.7μm到90.19μm。高性能液相色谱和叶核方法评估了酚类化合物含量和释放速率。PLA纤维具有20%的PP,显示出酚类化合物的最大保留率,为1243.69±234.14 µg化合物/ g纤维),而PCL纤维在24小时内显示出迅速释放,高达95.79±5.94%。这些结果表明,商业挤出机可以在化妆工业中可能使用的聚合物微纤维作为菠萝果皮中酚类化合物的递送系统的可行性。
生物塑料是生物学衍生的可生物降解聚合物。食物浪费是可持续发展的挑战,因为它可以增加温室气体排放和其他与环境有关的问题。同时,塑料废物对环境污染产生了重大贡献。由于常规塑料引起的环境问题越来越大,“环保”材料的开发引起了广泛的兴趣。众所周知,水果废物在水果加工和制造过程中会增加。本研究旨在探索水果废物作为生物塑料材料的潜力,作为传统塑料的环保替代品。大多数水果废物在包含淀粉,纤维素,果胶和其他生物聚合物时具有生物塑料的潜力。一些水果废物是由水果加工产业产生的,包括香蕉皮,菠萝果皮,榴莲种子,菠萝蜜种子,鳄梨种子,橙皮,橙色果皮,菠萝蜜花生,石榴果皮和火龙果皮等。从水果废物中生产生物塑料的生产提供了间接解决两个问题的潜力,即减少塑料废物和水果废物,同时促进环境可持续性。为了克服挑战并开发可行的方法来生产基于生物的塑料,实际上有必要加强该领域的创新和研究。这种环保战略可以减少我们对化石燃料制成的常规聚合物的依赖,并带我们进入更可持续的未来。
抽象的牙菌斑是一个薄而柔软的层,其中包含细菌聚集并粘在牙齿的表面上。此牙齿斑块是无色的,因此眼睛看不到。因此,要看到牙齿,需要一个斑块染色剂。mangosteen Peel含有牙菌斑染料,形式为花色蛋白,产生紫色的红色或蓝色。除此之外,花青素是一种可溶于水的活性物质,可以与斑块中的糖蛋白结合,从而可以与斑块形成键。这项研究的目的是确定花青素中的花青素含量以及由芒果果皮提取物制成的粘膜粘附凝胶配方,该凝胶提取物是最佳的,作为牙皮斑块着色剂。该研究方法是通过测试花色苷水平的实验实验室研究,使粘膜粘附性凝胶配方具有10%,25%,50%芒果果皮提取物的基本成分,然后通过有机摄影测试,味觉测试和粘附测试通过有机摄影测试和粘附测试来测试凝胶的质量。研究结果表明,粘附性凝胶配方中的芒果果皮提取物的浓度影响了凝胶制剂的质量,其中Mangosteen Peel提取物的浓度为10%,25%和50%,能够提高制剂的颜色强度,并提高凝胶制剂的粘附力,但可以降低凝胶的扩散能力。使用芒孔果皮提取物作为公开溶液的最佳浓度是25%的浓度,因为它具有良好的粘附力和散布功率和颜色强度,与牙齿形成对比。
果皮地区与珀斯与北部接壤,并在基础设施能力共享中密切相关。该地区在2020年产生了287,000吨废物,包括约52%的C&D废物,29%的C&I废物和19%的MSW。该地区在2020年接受了143,000吨的治疗,回收了71,000吨(50%),填充了72,000吨(50%)。在2020年,收到的材料速率(87,000吨)并从该地区运输(231,000吨)大约等于该地区的发电速度。下面介绍了2020年果皮废物和资源回收的关键废物概况数据。
腐蚀无法避免,但其速度可以减慢。可以用作金属腐蚀抑制剂的一种方法是使用抑制剂。由于使用了安全,易于获得的抑制剂,可生物降解,便宜且环保。菠萝果皮提取物可用作单宁含量为0.28%的腐蚀抑制剂,从而抑制腐蚀速率。这项研究的目的是确定绿色抑制剂菠萝果皮提取物作为使用体重减轻法和微观结构观察中最腐蚀面积的钢铁SS 400腐蚀速率的抑制剂。使用的方法是一种实验方法。The results showed that the lowest corrosion rate was obtained on specimens soaked with pineapple peel extract inhibitors for 4 days with an average corrosion rate of 12,48 ipm while on the microstructure it is known that specimens soaked with pineapple peel extract inhibitors for 4 days can inhibit the occurrence of Corrosion was better with the percentage of area corroded by pineapple peel extract inhibitor 4 24.54%的天数为74.46%。浸入菠萝果皮提取物抑制剂中的时间越长,提取物的粘合剂越多,可以保护样品免受直接海水反应的影响,从而使耐腐蚀性较好。
西瓜(Citrullus lanatus)是一种以清爽的味道和高水量而闻名的水果。这篇全面的评论探讨了西瓜及其皮的营养益处,突出了其潜在的健康益处和生物活性化合物。西瓜的肉富含维生素A,B6和C,并含有大量的抗氧化剂,例如番茄红素和β-胡萝卜素,这有助于其抗炎和心脏保护特性。此外,西瓜是葡萄氨酸等氨基酸的良好来源,瓜氨酸与改善运动性能和心血管健康有关。西瓜的皮,通常被丢弃为废物,也具有巨大的营养价值。新兴研究表明,西瓜果皮中的生物活性化合物(例如酚酸和类黄酮)具有抗氧化剂和抗炎特性,使其成为功能性食品和营养的有价值的成分。这篇评论巩固了西瓜肉和果皮的营养成分和健康益处的最新研究,主张将果皮纳入饮食实践,以最大程度地减少食物浪费并最大程度地减少营养摄入量。未来的研究指示包括探索创新的烹饪应用以及开发补充剂,以利用西瓜及其对人类健康的全部潜力。
摘要:Rambutan是东盟国家的热带水果,以其令人耳目一新的风味而闻名。然而,由于新鲜的消费及其短期的保质期,果皮通常被大量丢弃为废物。通过利用果皮来实现工业应用,通过最佳利用来实现可持续发展来减少废物量。由于存在有益和营养的酚类化合物,rambutan果皮含有大量抗氧化剂。rambutan剥离提取物具有抗氧化剂,抗糖尿病,抗肥胖,抗增殖,抗菌和抗癌特性,因此可用于食品,药品和化妆品工业。需要一个提取过程来将酚类化合物与rambutan ee分离。诸如溶剂极性,成本,提取效率和提取时间等因素需要在所选方法中考虑,因为它将在行业中实施。尽管如此,尚无评论论文专注于最合适的rambutan剥离方法,该方法可能在行业中可以采用。本评论论文总结了用于从rambutan peel提取酚类化合物的可用提取方法,并确定可能在行业中可能使用的最合适的提取方法。在文献中,超声辅助提取(UAE)方法是行业中最有效的方法。
2022 年世界香蕉生产量为 135 milhões de toneladas métricas(STATISTA,2024 年),并发送给巴西四张世界主要生产商(EMBRAPA,2024 年)。香蕉是天然或加工过程中食用的香蕉、香蕉帕萨、香蕉片、其他产品。 Cada tonelada de Banana Pode gerar cerca de cascas (SOUZA et al., 2010), que são geralmente descartadas (gerando Problemas de poluição) ou sub-utilizadas (por example, em alimentação Animal).考虑到食品的子产品是为了获得材料而准备的材料(OTONI 等人,2021 年),香蕉袋是生物降解薄膜产品的考虑因素。薄膜产品中存在与香蕉果皮堆肥相关的隔离物,与 Embrapa 前面的 trabalho (OLIVEIRA et al., 2017) 相比,香蕉果皮纳米复合材料中使用的香蕉果皮纤维素的果胶和纳米晶。另一种选择是对经济和环境方面的兴趣,以及对电影部分子产品整体的精心制作,以提高整体特性。 Desta forma, pode-se ainda explorar as propriedades
基于淬灭效果,开发了一种量化槲皮素(QUE)的方法,这种类黄酮对水溶液中3-甲基托托酸(3MPA)CDTE量子点(QDS)的光致发光作用。来自3MPA -CDTE QD的发光(460/527 nm)(估计为1.5×10 -7 mol l -1)产生了在5.0×10 -6和6.0×10 -6和6.0×10 -5 mol l -1之间的发光淬灭信号之间的发光淬灭信号之间的线性关系(r 2 0.990)。在存在其他类黄酮和维生素C的情况下,该方法成功地用于量化Que,检测到3.2×10 -6 mol l -1。10 -5 mol L -1 Que水平的标准偏差为2%。评估了其他类黄酮在QDS发光中的作用,并且在儿茶素和黄酮的情况下未观察到干扰(浓度高达QUE的5倍)。Histeritin,naringenin,kaempferol和Galangin在相同浓度的Que中没有任何干扰。但是,即使在相同浓度的Que中,莫林也会干扰。维生素C的浓度高于Que的10倍的浓度高出10倍。通过提出的方法确定了操纵配方和食物补充胶囊中Que的含量,并将其与HPLC获得的结果进行了比较。最后,使用3MPA-CDTE QDS测定槲皮素,以分析薄层色谱法后黄色和红洋葱提取物,以使Que选择性。