大脑由复杂的神经元和连接网络组成,类似于人工网络的节点和边缘。对大脑接线图进行网络分析可以深入了解大脑如何支持计算并调节感知和行为背后的信息流。成年苍蝇第一个全脑连接组已经完成,其中包含超过 130,000 个神经元和数百万个突触连接 1–3 ,这为分析完整大脑的统计特性和拓扑特征提供了机会。在这里,我们计算了二节点和三节点基序的普遍性,检查了它们的强度,将这些信息与神经递质组成和细胞类型注释联系起来 4,5 ,并将这些指标与其他动物的接线图进行了比较。我们发现苍蝇大脑网络显示出富俱乐部组织,具有大量(连接组的 30%)高度连接的神经元。我们确定了富俱乐部神经元的子集,它们可能充当信号的整合器或广播器。最后,我们检查了基于 78 个解剖定义的大脑区域或神经纤维的子网络。这些数据产品在 FlyWire Codex (https://codex.flywire.ai) 中共享,应作为探索神经活动与解剖结构之间关系的模型和实验的基础。
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. miranda) 中 Pten 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (上) 和果蝇 (D. miranda) (下) 中目标基因 Pten 所在的 DNA 链。指向右侧的细箭头表示 Pten 在果蝇 (D. miranda) 中位于正 (+) 链上,指向左侧的细箭头表示 Pten 在果蝇 (D. melanogaster) 中位于负 (-) 链上。指向与 Pten 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Pten 反方向的宽基因箭头相对于细箭头位于反链上。果蝇 (D. miranda) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因直系同源,而黑色基因箭头表示非直系同源。灰色箭头表示在两个基因组邻域中都存在但不是同源的基因(在本例中为 Ror),在 D. miranda 中位于 Pten 的上游,但在 D. melanogaster 中位于 Pten 的下游。D. miranda 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符是 D. miranda 特有的。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014)。D. miranda 中 Pten 的编码区显示在用户提供的轨道(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括果蝇 (D. melanogaster) 蛋白质的 Spaln(紫色,果蝇 (D. melanogaster) 的 Ref-Seq 蛋白质比对)、NCBI RefSeq 基因的 BLAT 比对(深蓝色,果蝇 (D. miranda) 的 Ref-Seq 基因比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;果蝇 (D. miranda) 的 Illumina RNA-Seq 读段比对)以及使用果蝇 (D. miranda) RNA-Seq (SRP009365) 由 regtools 预测的剪接点。所示的剪接点具有最小读取深度 10,其中 10-49、50-99 和 100-499 支持读取分别以蓝色、绿色和粉色表示。 (C) 果蝇 Pten-PB(x 轴)与果蝇直系同源肽(y 轴)的点图。左侧和底部标明氨基酸编号;顶部和右侧标明 CDS 编号,CDS 也以交替颜色突出显示。点图中的间隙表示序列相似性较低的区域。
2 霍华德休斯医学研究所,波士顿,MA 02115 通信:ram@genetics.med.harvard.edu (RV);perrimon@genetics.med.harvard.edu (NP) 摘要 CRISPR 筛选可实现系统的、可扩展的基因型到表型映射。我们之前开发了一种用于果蝇和蚊子细胞系的汇集 CRISPR 筛选方法,使用质粒转染和位点特异性整合来引入单向导 (sgRNA) 文库,然后进行 PCR 和整合的 sgRNA 测序。虽然有效,但该方法依赖于早期组成型 Cas9 活性,这可能会导致基因组编辑和 PCR 检测到的 sgRNA 之间存在差异,从而降低筛选准确性。为了解决这个问题,我们引入了一种新方法来共转染表达抗 CRISPR 蛋白 AcrIIa4 的质粒以抑制早期 sgRNA 表达期间的 Cas9 活性,我们称之为“IntAC”(与抗 CRISPR 整合酶)。 IntAC 使我们能够构建一种由高强度 dU6:3 启动子驱动的新型 CRISPR 筛选方法。这个新库显著提高了整个基因组中适应性基因的精确度,在 5% 的误差范围内检索了 90-95% 的必需基因组,使我们能够生成迄今为止为果蝇组装的最全面的细胞适应性基因列表。我们的分析确定,IntAC 方法允许的升高的 sgRNA 水平推动了大部分改进。果蝇适应性基因与人类适应性基因表现出很强的相关性,并强调了旁系同源物对基因必需性的影响。我们进一步证明,IntAC 与靶向 sgRNA 子库相结合,能够在溶质超载下精确地正向选择转运蛋白。IntAC 是对现有果蝇 CRISPR 筛选方法的直接增强,显著提高了准确性,并且可能广泛应用于其他细胞类型(包括蚊子、鳞翅目、蜱虫和哺乳动物细胞)中的无病毒 CRISPR 筛选。
神经元在计算和通信方面表现出色,同时还能平衡严格的物理和生物约束。以果蝇这种相对简单的生物为例。果蝇的大脑不比罂粟籽大,包含大约 130,000 个神经元和数千万个突触。尽管体积很小,但这个神经网络却支持复杂的功能,从在不同环境中寻找食物到参与求偶仪式——有时还会惹恼人类。这些神经网络如何能够在固有的空间限制内如此出色地运作?了解这些和其他神经系统的组织和工作原理是一项关键的事业,跨越神经科学和物理学领域数十年的研究。中国同济大学的张欣雅及其同事最近进行的一项研究朝这个方向迈出了一步,报告了一种将神经元连接概率与果蝇大脑中的物理距离联系起来的缩放关系 [ 1 ]。这一观察是在果蝇的不同发育阶段进行的,可以解释这些神经网络如何在大脑固有的几何约束内实现最佳功能。
转座元件(TES)是重复的DNA序列,可能能够在整个基因组中移动。除了它们固有的诱变效果外,TE还可以通过捐赠其内在的调节序列(例如促进细胞基因的异位表达)来破坏附近基因。te转录不仅对于TE换位本身是必需的,而且还可以与Te-Gene Fusion转录本相关,在某些情况下也是普遍转录的产物。因此,正确确定了TE副本的转录状态,是为了理解TE在宿主基因组中的影响。识别和量化TE转录的方法主要依赖于简短的RNA-seq读取以在家庭级别估算TE表达,同时使用特定算法来区分副本特定的转录。但是,将简短的读数分配给其正确的基因组位置,基因组特征并不是微不足道的。在这里,我们检索了果蝇的全长cDNA(远程prime,词汇),并使用牛津纳米孔技术进行了对其进行验证。我们表明,可以使用长阅读RNA-Seq来识别和量化复制级别的转录TE。尤其是,使用长读数比简短读数更好地估计了插入过度插入的注释基因。尽管如此,长TE转录本(> 4.5 KB)并未得到很好的捕获。大多数表达的TE插入对应于失去其转置能力的副本,在家庭中,只有几份副本表示。长阅读测序还允许识别约107个TE副本的剪接转录本。总的来说,睾丸和卵巢之间TE的第一个比较在子类和插入水平上发现其转录景观中的差异。
果蝇肌生成抑制剂他的基因是成人肌肉功能和肌肉干细胞维护的essen0al,Robert Mitchell-Gee*1,Robert Hoff*2,Robert Hoff*2,Kumar Vishal2,3,Daniel Hancock1,Daniel Hancock1,Sam McKitrick4,Sam McKitrick4,Cristina newnes newnes newnes-quipperjeta1,tyna and crippation and tyanna l.lovator richana l.lovator,richanna l.lova。 taylor1+ 1。生物科学学院,加的夫大学,加的夫,CF10 3AX,英国。2。圣地亚哥州立大学生物学系,圣地亚哥,加利福尼亚州92182,美国3。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。 新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。在果蝇中,直到最近才描述了具有相似特征的成年MUSC。这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。然后我们探索了他的功能。他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。2015; Laurichesse and Soler 2020)。在飞行肌肉本身中,他的突变体的MUSC数量依赖于年龄,这表明他是维持成年肌肉干细胞种群所必需的。此外,MUSC的这种下降与功能效应相吻合:飞行能力的年龄下降。总的来说,他是果蝇成人MUSC的新颖标志,并且在老化过程中需要保持MUSC数量和飞行能力。介绍。在水果中,果蝇果蝇已证明了研究人员探索肌肉发育的遗传和细胞基础的宝贵模型(Dobi等人在发育过程中,果蝇经历了两波骨骼肌肌发生。胚胎发生过程中的第一个引起了使用ungl pupagon的幼虫肌肉。第二波在普帕奇(Pupagon)期间形成了在成年型中发现的各种肌肉,这些肌肉持续了两个到三个月。不同的成年肌肉是由成年肌肉祖细胞(AMP)引起的,这是一种干细胞populagon,在胚胎发生过程中被放在一边,然后在幼虫寿命中增殖。成年肌肉包括由机翼圆盘AMP形成的胸间间接肌(IFMS)和跳跃肌肉(也称为TDT,TDT,TREGAL的to骨抑制剂),这些肌肉是由与T2间胸乳清盘(Jaramillo et e e2009)。
睡眠和昼夜节律功能障碍是阿尔茨海默氏病(AD)的常见临床特征。越来越多的证据表明,除了症状外,睡眠障碍还可以推动神经退行性的进展。蛋白质聚集是AD的病理标志;然而,睡眠如何影响蛋白质的分子途径仍然难以捉摸。在这里,我们证明了睡眠调制影响蛋白质的蛋白质和神经退行性的果蝇模型中的神经退行性的进展。我们表明睡眠剥夺增强了TAU聚集毒性,导致突触变性加剧。相比之下,通过调节的自噬液和泛素化的tau的清除率增强了神经元的毒性tau降低,导致神经元的毒性tau缩减减少,这表明质量的蛋白质处理和清除率导致了证明的突触完整性和功能。这些发现突出了睡眠与蛋白质稳态调节之间的复杂关系与增强睡眠治疗剂的神经保护潜力,以减慢或延迟神经变性的发展。
1 Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany, 2 Department of Biology, Chemistry, and Pharmacy, Freie Universita¨t Berlin, Berlin, Germany, 3 Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wu¨rzburg, Germany, 4 Core facility for metabolomics and small molecules mass spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany, 5 Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany, 6 CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France, 7 Aix Marseille Universite课,Inserm,SSA,MCT,Marseille,法国,8显微镜核心设施,Max Planck感染生物学研究所,柏林,德国,9医学院,武兹堡大学,德国武兹堡,德国,德国,德国
1 斯坦福大学生物系,斯坦福,加利福尼亚州,美国,2 耶鲁大学生态与进化生物学系,纽黑文,康涅狄格州,美国,3 弗吉尼亚理工大学生物科学系,布莱克斯堡,弗吉尼亚州,美国,4 北卡罗来纳大学教堂山分校生物系,北卡罗来纳州教堂山,美国,5 加州大学戴维斯分校进化与生态系,戴维斯,加利福尼亚州,美国,6 班戈大学环境与自然科学学院,班戈,英国,7 凯斯西储大学生物系,克利夫兰,俄亥俄州,美国,8 雪城大学生物系生殖进化中心,纽约州,雪城,美国,9 东京都立大学生物科学系,日本,10 斯坦福大学发育生物学系,斯坦福,加利福尼亚州,美国,11 捷克科学院生物中心昆虫学研究所,Č eske´ Bud ě jovice,捷克共和国,12 于韦斯屈莱大学生物与环境科学系,于韦斯屈莱,芬兰,13 北海道大学生物科学系,札幌,日本,14 夏威夷无脊椎动物项目,林业与野生动物部,檀香山,夏威夷,美国,15 东京大学复杂性科学与工程系,日本东京,16 夏威夷大学太平洋生物科学研究中心,M ā noa,夏威夷,美国,17 儿科遗传医学部;华盛顿大学实验室医学与病理学系,美国华盛顿州西雅图,18 詹姆斯库克大学黛恩树雨林观测站,澳大利亚汤斯维尔,19 贝勒医学院,美国德克萨斯州休斯顿,20 不列颠哥伦比亚大学动物学系,加拿大温哥华,21 加州大学伯克利分校细胞与分子生物学系,美国加利福尼亚州伯克利,22 加州大学伯克利分校霍华德休斯医学研究所,美国加利福尼亚州伯克利,23 爱丁堡大学生态与进化研究所,英国爱丁堡,24 康奈尔大学昆虫学系,美国纽约州伊萨卡,25 内华达大学拉斯维加斯分校生命科学学院,美国内华达州拉斯维加斯,26 北海道大学北海道大学博物馆,日本札幌,27美国密歇根州霍顿市密歇根理工大学生物科学系,28 CZ Biohub 研究员,美国加利福尼亚州旧金山市
致谢:本研究由 HHMI (SLZ) NIH BRAIN 计划奖 (1RF1MH117823-01) (SLZ 和 DEK) 和 R01MH114017 (DEK) 资助。我们要感谢 Mark Dombrovskiy、Alex Kim、Juyoun Yoo、Saumya Jain 和 Zipursky 实验室的其他成员就实验和抗体选择进行的有益讨论。