直接加热灭菌循环 – 140°C 下 120 分钟 – 确保消除每个培养箱表面的所有微生物和真菌孢子 (ANSI/AAMI/ISO 11134)。此声明已通过针对干热过程校准的枯草芽孢杆菌孢子悬浮液得到验证,因为这些孢子对干热灭菌的抵抗力最强,因此是推荐的指示生物 (美国药典,ch.1035)。施加到培养箱不同表面的所有孢子 – 腔壁 (不锈钢)、门 (玻璃) 和门垫圈 (钢化硅胶),在 140°C 下 120 分钟的灭菌循环后已被可靠地消除。
促进根瘤菌(PGPR)的植物生长是一组细菌,可以直接或间接增强植物的生长。这些细菌通常在与植物根相关的土壤中发现。两种菌株:bradyrhizobium japonicum pp236808和枯草芽孢杆菌PP250150已记录以直接增加大豆植物的生长。在这项研究中,棉花在与大豆和玉米的作物轮作中起着重要作用。因此,这项研究的目的是间接增强棉花的生长。间接机制涉及植物病原体的生物控制。在体外,细菌菌株均表现出拮抗性镰刀菌和溶质性溶质性溶胶植物,通过产生裂解酶,IAA,氰化氢,氰化氢,催化酶,氨和氨水和sideophore,引起棉花阻尼疾病。两种菌株对于磷酸盐溶解度,IAA产生,HCN产生以及发现为催化酶呈阳性。而bradyrhizobium japonicum pp236808是高铵。营养素的竞争LED可以改善植物健康并促进棉花的生长,从而促进幼苗生存。未经处理的种子作为对照。在温室中实验拮抗菌株(PGPR)的处理使疾病的发病率显着抑制了与未经处理的疾病相比的最低值。此外,在田间条件下,相同的PGPR菌株显着降低了疾病的发病率。最后,将Japonicum pp236808和枯草芽孢杆菌PP250150的应用施用显着提高了种子棉的产量。既然PGPR对环境友好,因此可以安全地用于改善植物的生长和提高农作物的产量。
孢子形成是人类肠病毒梭菌艰难梭菌的环境存活和传播所必需的。在所有细菌孢子的形成器中,通过激活主反应调节剂SPO0A来调节孢子形成。但是,直接调节c的因素和机制。艰难梭菌SPO0A活性未定义。在研究良好的芽孢杆菌物种中,Spo0a被Spo0e(一种小磷酸酶)直接灭活。了解c中的spo0e函数。艰难梭菌,我们创建了SPO0E直系同源物的无效突变,并评估了孢子形成和生理学。SPO0E突变体产生了更多的孢子,表明Spo0e抑制c。艰难梭菌的孢子形成。出乎意料的是,SPO0E突变体也表现出增加的运动性和毒素产生,并增强动物感染的毒力。我们发现SPO0E与SPO0A以及毒素和运动调节剂RSTA相互作用。SPO0A,SPO0E和RSTA之间的直接相互作用构成了以前未知的分子开关,该开关将孢子形成与运动性和毒素产生。在b中对Spo0e功能进行了重新研究。枯草液显示,SPO0E诱导运动性,证明SPO0E调节了发散特征之间的运动性和孢子形成。此外,SPO0E的3D结构分析揭示了c0e和结合伙伴之间的特定和独家相互作用。艰难梭菌和b。枯草厂可深入了解不同物种之间这种调节机制的保护。
图 2. 使用 MolYsis Complete5 试剂盒(A、B)和 DNeasy PowerSoil Pro 试剂盒(C、D)提取之前在 LOD 处加标的细菌和真菌样品的 C t 值。AB:巴西 A. ;CA:白色念珠菌;BS:枯草芽孢杆菌;CS:芽孢杆菌;PA:铜绿假单胞菌;SA:金黄色葡萄球菌。物种名称缩写后的数字表示在样品制备之前加标的滴度(以 CFU 为单位)。标有“+D”的样品包含含有 10 6 个 Jurkat 细胞的基质,这些细胞保存在冷冻保存介质中。
摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
抽象的磷酸盐 - 溶解细菌是植物生长的细菌之一,可通过多种途径溶解土壤中不溶性的磷酸盐并促进植物生长。因此,它提供了一种替代选择,而不是应用破坏土壤化学和生态平衡的化学肥料。尽管最近关于磷酸盐溶解细菌的研究最近有所增加,但有关薄荷和茴香根际的研究仍然有限。需要研究可以溶解磷酸盐并替代化学肥料的不同根际局部细菌。已经确定,从薄荷(Mentha Piperita L.)和茴香(Foeniculum vulgare L.)根瘤菌获得的53种细菌分离株中,有15种在Pikovskaya Agar(PKA)介质上使用Maldi-tof MS MAST形成了一个透明(Halo)根源。评估了这些分离株的形态,生化和IAA产生以及通过NBRIP肉汤培养基中分离株对磷酸盐溶解的定量测量。从枯草芽孢杆菌MMS -7中注意到溶解度为281.6 mg l -1的最高效率。接下来是荧光症MMS -11,溶解值分别为263.4 mg l -1和苏云金芽孢杆菌MMS -3,溶解值分别为172.1 mg l -1。在磷酸盐溶解细菌分离株中,P溶解指数在PKA琼脂培养基上为1.2-3.7。此外,使用枯草芽孢杆菌MMS -7,在23.38 µg mL -1下的最高IAA产生。关键字:Mentha Piperita,foeniculum vulgare,磷酸盐溶解细菌,MALDI TOF MS接下来是荧光症MMS -11,其值为19.72 µg ml -1和苏云金芽孢杆菌,使用MMS -3,值为18.98 µg ml -1。这项研究表明,选定的局部分离株可以用作有效的基于磷酸盐的微生物肥料。
摘要 在两个农业季节中,进行了一项田间试验,以量化本地细菌接种剂对不同氮 (N) 施肥量下小麦作物生长、产量和品质的影响。小麦在实验技术转移中心 (CETT-910) 的田间条件下播种,该中心是来自墨西哥索诺拉州亚基谷的代表性小麦作物区。试验采用不同剂量的氮 (0、130 和 250 kg N ha −1 ) 和细菌联合体 (BC) (枯草芽孢杆菌 TSO9、B. cabrialesii subsp. tritici TSO2 T 、枯草芽孢杆菌 TSO22、B. paralicheniformis TRQ65 和 Priestia megaterium TRQ8) 进行。结果表明,农业季节影响叶绿素含量、穗大小、每穗粒数、蛋白质含量和全麦粉黄度。在施用 130 和 250 kg N ha −1(常规氮肥剂量)的处理中,叶绿素和归一化植被指数 (NDVI) 值最高,冠层温度值较低。氮肥剂量影响小麦黄色浆果、蛋白质含量、十二烷基硫酸钠 (SDS) 沉降量和全麦粉黄度等品质参数。此外,在 130 kg N ha −1 的施用量下,施用本地细菌联合体可使穗长和每穗粒数增加,从而提高产量(与未接种处理相比,每公顷增产 1.0 吨),且不影响谷物品质。总之,使用这种细菌联合体有可能显著促进小麦生长、产量和品质,同时减少氮肥施用,从而为提高小麦产量提供一种有前途的农业生物技术替代方案。
有研究表明,对抗大生物体免疫因素的防御是通过形成对革兰氏阳性菌有溶解作用的膜囊泡来实现的,而这反过来可能导致微生物产生抗生素耐药性。金黄色葡萄球菌 ( S. aureus ) 是引起糖尿病足综合征 (DFS) 的常见病原体。我们描述了抗生素耐药性以及溶解囊泡作为金黄色葡萄球菌分离株和金黄色葡萄球菌参考菌株培养物中抗生素耐药性的作用。此外,我们使用枯草芽孢杆菌 ( B. subtilis ) 来确定囊泡在 36 名不同年龄的缺血性和混合性 DFS 患者中的溶解作用。这项研究的结果是,我们发现膜囊泡具有溶解作用,在金黄色葡萄球菌参考菌株及其临床分离株的囊泡周围以及枯草芽孢杆菌参考菌株的囊泡周围均形成了溶解区。在编码对多种抗生素耐药性的基因中,16.7%的临床菌株检测到blaCTX-M-2基因,11.1%的菌株检测到Erm和Tet基因,5.5%的菌株检测到Mec-1基因,5.5%的菌株检测到VanA和VanB基因。5.5%的菌株还检测到了质粒介导的喹诺酮类药物耐药基因qnrB。同时,11.1%的金黄色葡萄球菌临床菌株检测到多重耐药。进一步的研究应分析所述基因对粘附和膜囊泡形成的贡献及其在DFS患者和其他来源的伤口和感染的伤口愈合发病机制中的意义。
家族性高胆固醇血症(FH)是最常见的单基因疾病之一,影响了全球250人中的1个。该疾病是由负责脂质代谢中关键途径的突变引起的,例如低密度脂蛋白受体(LDL-R),载脂蛋白B(APOB)或原蛋白蛋白转化蛋白转化酶枯草蛋白/KEKXEN/KEKXIN/KEXKIN型9(PCSK9),导致低密度Lipoprotolote蛋白(1)持续高度高。如果未经治疗,FH会大大增加患动脉粥样硬化心血管疾病的风险,这种疾病通常在成年初甚至童年时表现出来。尽管在理解其病理生理学和治疗方案方面取得了重大进展,但研究估计,在全球诊断出不到10%的FH病例,而在被诊断的患者中,许多病例仍未治疗[2]。
拥有“遗传学”,这有点奇怪,因为它可以像果蝇或麦拉斯的参与一样,但我们试图使DNA弥补这一点。如今,最令人兴奋的发现涉及枯草芽孢杆菌的不同基因的分离。在后者中,我们至少能够进行一些相当干净的实验,到目前为止,这些实验的结果相当负面,这可能归因于在几个微米距离内保持底漆DNA分子的极度,并且在几个微米的距离内涉及90分钟的时间间隔,这是单个分子完全复制的90分钟。产生的DNA看起来非常好像被卷曲和重新刊登了很多次,因此底漆的短段被乘在支架的DNA链中重复重复。这暗示着实验解决方案也带来了一些前景。