Ripalben Fadiya和Ronak Chhaya doi:https://dx.doi.org/10.33545/26649926.2024.v6.i2a.225,抽象的果实为几种细菌和Fungi的生长提供了足够的条件。微生物破坏水果并改变质地,味道,气味,风味等。,使它们不可食用。通过微生物的生长,果实的损失很大。其他原因,例如在处理和运输过程中,有水果受损的风险更大。由于水果的破坏,农民遭受了巨大的损失。关键字:变质,细菌,真菌,收获后,保质期介绍水果水果是树木和其他含有种子的植物的甜美而肉质的产品,它们通常被作为食物食用。有多种尺寸,形状,颜色和水果的味道。水果是健康饮食的主要组成部分,因为其营养价值。果实为多种微生物的生长提供了理想的环境。专门针对细菌水果为生长和生存能力提供了良好的环境。水果是人类的重要营养来源,人类为人体提供补充,并以人类生长的比例正确地为人体补充。由高浓度的各种矿物质,糖,维生素和氨基酸组成的水果组织[1]。印度是仅次于中国的水果和蔬菜的第二大生产商。根据Kumar(2011)[5],食品和农业组织(FAO)的数据显示,2011年印度在2011年生产了约76424.2吨水果。还可以添加作为沙拉以作为甜味组合。水果很美味,也是均衡饮食的重要组成部分。他们不仅提供必需的营养素,还可以增强各种菜肴的风味和质地。人们可以在常规饮食中使用水果作为零食,作为两餐之间的健康零食。水果可以融合成冰沙,从而获得营养丰富的饮料。各种烹饪水果提供大量的纤维和水,许多烹饪水果通常在维生素C中含量很高[2]。食用水果中消耗的饮食纤维会促进饱腹感,并可能有助于控制体重和降低血液胆固醇,这是心血管疾病的危险因素[3]。果实的健康益处普遍认为是健康的。水果提供饮食纤维,摄入量与心血管疾病和肥胖症的发病率较低有关[4]。水果和蔬菜还可以为饮食提供矿物质和维生素,并且是植物化学物质的良好来源,它们起着抗炎,抗氧化剂和植物雌激素和其他保护机制的作用。香蕉植物的所有部分都有药物应用。在支气管炎和痢疾中使用的花朵,煮熟的花朵是糖尿病患者的,将幼叶放在烧伤和其他皮肤苦难上。香蕉的根适用于消化系统疾病和痢疾[5]。在印度腹泻的情况下给出了香蕉种子粘液[6]。香蕉分别含有27%,12%和8%的维生素B6,维生素C和镁。水果是蛋白质和脂肪的较差的来源。鳄梨是包含28%脂肪的例外。鳄梨含有大量的钾,纤维,维生素B6,E,K和两个称为叶黄素和玉米黄质的类胡萝卜素,可支持眼睛健康。通常水果是铁的不良来源,但近视是铁的良好来源。番石榴,柑橘类水果和腰果富含维生素C,但数量的维生素是从水果到水果的不同。苹果,梨,葡萄和一些柑橘类水果等水果含有类黄酮,可作为抗氧化剂。
引言柠檬酸(2-羟基 - 丙烷-1,2,3-三羧酸)源于拉丁语“柑橘”,柑橘树,类似于柠檬的果实。它是三羧酸和路缘周期的全局中间产物。柠檬酸是一种重要的多功能有机酸,自20世纪初以来就在工业上生产的家庭和工业应用中具有广泛的用途。在开发微生物过程之前,柠檬酸的主要来源是柑橘类水果,即柠檬。尼日尔曲霉的发现柠檬酸盐积累导致了发酵过程的迅速发展,仅十年后,该过程占了全球生产的很大一部分。根据Anastassiadis等人。(2008)160万吨柠檬酸是在2007年全球生产的,需求每年增加约3.5-4%。Majumder等。(2010)报道,柠檬酸通常用于食品和饮料,洗涤剂,药品,化妆品,洗护用品和其他行业。超过75%的柠檬酸在饮料和食品行业中消耗,主要是碳酸饮料中的成分和一种酸性。在工业上,金属精加工和清洁是最大使用柠檬酸的,其次是润滑剂,螯合剂,动物饲料和增塑剂(Bauweleers等,2014)。根据估计,柠檬酸的市场价值将继续增长,并将很快超过20亿美元(Van der Straat等人,2014年)。因为它的三个柠檬酸的应用是基于其三种特性酸度和缓冲能力,味道和风味以及金属离子的螯合作用。
4 Sniffing Search for the causes of strange odors in cosmetics by non-target analysis using GC-TOFMS ○Kabashima Fumie, Sakurai Masafumi, Estrella Ray Gel (LECO Japan (same)) 5 Development of structural analysis methods using GC-TOFMS and machine learning and application to analysis of aroma components in wood ○Kubo Azusa, Kubo Ayumu, Fukudome Takao,Ikukata Masaaki(国家电子公司,有限公司)6一种简单的方法,用于测量有机物等固体物质的气味成分(Yasda Hajime Yasda Hajime(年度高级工业科学与技术研究所))7 7的变化是从农业土壤中发出的臭味物质的变化,添加了不同的材料,添加了不同的材料,添加了koga chihiro 1) (1)萨加大学研究生院,2)Kagoshima大学研究生院)8使用超紧凑型气体色谱法对牛的质量评估TMR○Matsuzaki Yuya 1),Matsuzaki Yuya 1),Hattori Ikuo 2),Hattori ikuo 2)学校,2)Tokai University,3)Ballwave Co.,Ltd。)9使用异味和香气组件在长期存储新的柑橘类品种期间,使用异味和香气组件开发非破坏性质量评估方法,Saga ka No. 35,Saga ka考试,○○Nakajima ai,Nakajima ai,nakajima ai,nakajima ai,furutota nobuhiro,ueno dairo diaka agaa aga agaa agaa agaa agaa agaa comply
摘要 - 全球计算机视觉的加速发展对水果收获的估计产生了重大影响,从而提高了效率并大大减少了食物浪费。此外,这项技术在农业部门面临着显着的抵抗力和缺乏知识。本综述的目的是分析人工视力方法在预测高茎果的收获时。因此,应用了非实验性描述性设计,属于无荟萃分析的系统综述。基于定义的标准(包含和排除),从电子数据库Scopus,Scielo和Redalyc中选择了26篇开放访问文章,这些文章涉及使用VA来预测高茎水果的收获。的发现表明,大多数研究使用近红外(NIR)光谱和RGB图像处理来估计收获,分别达到95%(柑橘类水果)和75%(苹果)的平均准确性。此外,使用RGB和YOLOV3图像传感器的无人机的使用使得获得大于90%的精确度成为可能,从而实现了收获前4到6个月之间的预测。得出结论是,使用最常用的VA方法是RGB图像传感器,光谱法(NIR),无人驾驶飞机(UAV)和Yolov3,它们在预测高茎果实的成熟方面的准确性大于75%。该方法的选择将主要取决于您是要分析果实的内部还是外部部分,因此,重要的是要识别高茎果实在其生长阶段的色素沉着的变化。
冷适应是一个复杂的生物学过程,导致植物中冻结耐受性的发展。在这项研究中,我们证明了柑橘类物种中蛋白酶抑制剂FMASP的表达[Fortunella Margarita(Lour。)swingle]通过最大程度地减少蛋白质降解来促进其冻结耐受性。首先,我们发现,尽管冰冻期间叶片损伤广泛,但只有冷熟练的kumquat植物能够在缓解压力后恢复正常的生长。为了剖析冷适量对这种抗冻结性能的影响,我们对受冷适应的kumquat叶片进行了蛋白质丰度分析和定量蛋白质组学分析(4℃),冷冻治疗(-10°C)和后冻结后的恢复(25℃)。FMASP(针对丝氨酸蛋白酶)和几种非特异性蛋白酶被确定为差异表达的蛋白质,该蛋白质是由冷适应的诱导的,并且在整个低温治疗过程中与稳定的蛋白质丰度相关。fMASP进一步被描述为多种蛋白酶的鲁棒抑制剂。此外,拟南芥中FMASP的异质表达证实了其在冻结耐受性中的积极作用。最后,我们提出了一个FMASP的工作模型,并说明了该细胞外细胞化蛋白酶抑制剂如何保护蛋白质免受降解,从而维持了基本的细胞功能以进行冰冻后恢复。这些发现揭示了蛋白酶抑制在冻结反应中的重要作用,并提供了有关该作用如何有助于开发新策略以增强植物冻结耐受性的见解。
对被忽视和未充分利用的农作物(NUC)的探索对于解决全球粮食不安全感确实至关重要。这些营养丰富的气候富农作物通常被忽略的商业价值有限,是打击营养不良和提高粮食安全的关键,尤其是在脆弱地区。这些农作物先前尚未归类为主要农作物,主要是构成了小农户农业区,是营养丰富,气候缓解且局部适应性的(Li and Siddique,2020; Mudau等,2022)。这些农作物的侵蚀可能会阻碍穷人的营养状况和粮食安全,并且它们的更多使用可以增加营养并赋予隐藏的饥饿(Dansi等,2012; Ojuederie等,2015; Joy and Siddhuraju,2017年)。至关重要的是,我们认识到这些农作物的隐藏潜力并利用它们实现更可持续的未来。这项社论聚焦有希望的研究,展示了NUC的隐藏潜力并通过现代进步探索其利用。在本社论中展示的有关研究主题的研究范围“被忽视和未充分利用的农作物物种可持续食品和营养安全:前景和隐藏的潜力”令人印象深刻,涵盖了这些农作物的各个方面,从基因改进到其在不同领域的潜在应用。研究主题由9个出版物组成:6篇原始研究文章和3条评论,重点介绍了一些NUC在应对全球食品和营养挑战时的遗传改善,保护和利用。柑橘grandis(L.)Osbeck,通常称为Pomelo,是一种未充分利用的柑橘类水果,其潜力作为豆酮,苯酚和抗氧化剂的来源,被忽略了。
抽象的甜橙是尼泊尔中间山丘中种植的主要水果之一。在地区和生产方面,它在柑橘类水果中排名第二,但农民尚未从该企业中获得潜在的收益,这主要是由于市场问题。这项研究分析了甜橙营销的不同方面,以支持克服这些问题。这项研究是在达古拉(Darchula)区的两个Palikas(Mahakali市政当局和Lekam乡村城市)进行的。总共从这两个Palikas中随机选择了50个样本,总共有100个样本。使用MS Excel和Stata对收集的数据进行处理和分析。Sweet Orange被发现是具有较高利益成本(BC)比率的高利润企业,但营销对此至关重要。从生产者到(i)消费者的四个主要营销渠道; (ii)零售商; (iii)批发商和; (iv)观察到收获前承包商。其中,生产者 - 消费者也是最常见的,也是盈利的,看看营销保证金(卢比6.81)和生产商的份额(83.49%),销售对零售商是有利可图的。但是,对于批发商的商业规模生产角色(仅占总销量的18%)至关重要。营销甜橙的主要问题是缺乏运输和存储,这也有助于更高的当地销售水平。在促进该企业并增加种植面积之前,应进行改进。开发适当的基础架构来促进甜橙营销是改善该子行业绩效的最多。合作营销也可能是实现理想更改的另一种快速替代方法。
领域背景和常识:肌醇是作为立体异构体存在的糖醇,它们具有相似的化学结构,但空间取向不同。在已知的九种立体异构体中,MYO 和 DCI 在自然界中最为常见。人体从葡萄糖合成 MYO,并通过酶差向异构酶 (O1) 将部分 MYO 转化为 DCI。自然界中,DCI 存在于角豆荚和某些豆类中,而 MYO 存在于柑橘类水果和特定豆类中 (O2、O3)。MYO 和 DCI 都在胰岛素信号通路中发挥关键作用。它们的缺乏与胰岛素抵抗有关,胰岛素抵抗是一种身体对胰岛素反应不当的疾病,导致高血糖症 (O4、O5) 等代谢问题。胰岛素抵抗是多囊卵巢综合征 (PCOS) 和糖尿病 (O5) 等疾病的标志。 PCOS 是一种常见的激素紊乱,其特征是代谢功能障碍,包括高血糖、胆固醇水平异常、高血压和胰岛素抵抗 (O5)。这种情况通常会导致雄激素水平升高(睾酮等男性激素)、生育问题和月经周期不规律。由于胰岛素抵抗 (O6),PCOS 患者体重增加也很常见。在专利申请时,已经充分证实 MYO 和 DCI 补充剂可以改善胰岛素抵抗并缓解 PCOS 患者的症状 (O7、O8)。这两种肌醇都被认为是安全的,可供人类食用,但专利范围不仅限于人类使用,还扩展到任何潜在应用。这些信息被视为本领域的专业人士的常识,因为有多项研究和临床观察支持。
摘要:地中海饮食以植物性食物为基础,以其健康益处而闻名。本综述旨在概述一些代表性的地中海饮食植物中存在的生物活性分子,研究其人类的营养效应和健康益处,以及从其种植中获得的环境优势和可持续性。此外,它探讨了由土壤和植物菌群特性帮助的强化食品的便利。良好的例子,例如特级初榨橄榄油和柑橘类水果,表现出显着的健康优势,包括抗癌,抗炎和神经保护作用。在科学文献中提出了其他知名的植物,其对人类健康的有益特征强调了。刺梨的inishaxanthin具有抗氧化特性和潜在的抗癌特性,而刺山柑则具有Kaempferol和槲皮素支持心脏血管健康并预防癌症。牛至和百里香,含有甲状腺酸酚和γ-替丁烯,表现出抗菌作用。除了营养素的作用外,这些植物还在干旱的环境中壮成长,还提供了与其培养相关的益处。他们的微生物群,尤其是植物生长促进(PGP)微生物,增强了植物的生长和胁迫耐受性,为可持续农业提供了生物技术机会。总而言之,利用植物微生物群可以彻底改变农业实践,并随着气候变化威胁生物多样性而提高可持续性。这些可食用的植物物种可能具有至关重要的重要性,不仅是健康产品,而且对于提高农业系统的可持续性。
naringin是一种主要在柑橘类水果中发现的天然黄酮,由于其公认的抗氧化,抗炎和心脏保护属性,人们引起了人们的注意。但是,纳林蛋白在调节能量消耗中的功能知之甚少。在本研究中,我们观察到补充十二周的纳林蛋白补充剂基本上重塑了高脂饮食(HFD)喂养小鼠的代谢特征,通过抑制体重增加,减轻肝脏体重和改变身体成分。值得注意的是,Naringin通过增强棕色脂肪组织(BAT)(BAT)和刺激腹股沟白色脂肪组织(IWAT)刺激褐变的肉基因活性来增强测试小鼠的全身能量消耗的能力。此外,我们的结果表明,补充纳林蛋白改变了肠道菌群的组成,SPE逐渐增加了双歧杆菌和lachnospiraceae_bacterium_28-4,同时减少了lachnospiraceae_bacacterium_baccetterium_bactterium_bacterium_bacterium_bacterium_bacterium_bacterium_dww59 and dubosecress_n。随后,我们还发现,补充纳尔·英丁(Nar Ingin)通过显着促进牛磺酸,酪醇和胸腺的产生,改变了粪便代谢物谱,它们充当热量调节的有效活化剂。有趣的是,纳林蛋白的代谢作用通过抗生素干预消除了肠道菌群消耗,同时导致纳林蛋白诱导的热生成的消失以及对饮食诱导的肥胖症的保护作用。这一发现揭示了肠道细菌和脂肪组织之间的新型食物驱动的横截面通信。collective,我们的数据表明,补充纳林蛋白会刺激蝙蝠的热发生,改变脂肪分布,促进褐变过程,从而抑制体重增加。重要的是,这些代谢作用需要肠道细菌的参与。