。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月6日。; https://doi.org/10.1101/2024.04.04.04.05.588317 doi:biorxiv Preprint
报道了一种高度稳定的垂直外腔二极管泵浦无循环液体染料激光器。该设计简单(无需制造工艺步骤,无流体回路)、紧凑(~ cm 大小)且经济高效。报道的光学效率为 18%,M² 为 1,具有出色的光稳定性——在 50 Hz 下 140 万次脉冲后效率没有下降,该值与流动系统相当,远高于有机固态激光器可实现的值。我们表明热效应是该激光器稳定性和动力学的核心。详细研究了不同泵浦脉冲持续时间/重复率的激光建立和关闭动力学;它们表明,随着泵浦脉冲持续时间和重复率的增加,脉冲缩短,这被证明是由于热透镜衍射损耗造成的。这种激光结构为测试或收获可溶液处理的增益材料提供了一个非常方便和简单的平台。
5化学系教授-DQ -CCT在过去的几十年中,在环境中的废水中发现了一些称为新兴的新污染物。这些污染物可以是药物,工业废物,农药等物质。此外,尚无对这些物质的组成和风险的全部了解,尽管这些物质以低浓度的形式可能存在于人们的环境和健康中(Zhao等,2024)。合成染料被广泛用于行业的各个部分,因为它们将颜色归因于与自然起源相比(Bakhnooh; Arvand,2024)更加稳定和便宜的产品。食品行业中使用最广泛的化合物之一是暮光黄色染料,其特征是橙色的颜色,它以几种饮料,糖果,冰淇淋,冰淇淋,蛋糕等以及其他产品(Balram等,2023)中存在。尽管有广泛的用途,但研究表明,大量食用时,该物质与健康问题有关,这可能导致过敏,皮肤刺激,突变,胃肠道疾病甚至癌症(Zhang等,2022)。此外,它代表了一个环境问题,因为它能够干扰水生生态系统,从而大大损害了存在的生物和动物(Abumelha,2024)。
图1:肯塔基地质调查局建立的排水子碱边界。浅蓝色显示的大盆地是沙洞盆地。这是这项研究的主要主题。以前的染料跟踪结果显示为红线。请注意,砂洞盆地内的染料迹线是从另一个大盆地的高流量溢流途径,并且不能定义盆地的范围。
抽象聚丙烯是世界上顶级商品聚合物之一,也广泛用于纺织业。然而,它的非极性性质和部分结晶的结构显着使植物型的工业着色过程变得复杂。当前,由聚丙烯制成或具有很大比例的聚丙烯制成的纺织品在非常严峻的条件下染色,包括使用高压和温度,这使得该过程的能量密集型。本研究提出了三步的着色剂的合成,能够粘附在没有严重消耗能量条件的情况下的合成聚丙烯纱线上。这可以通过使用三甲氧基 - 尼硅烷封装有机色素,通过用三甲基甲基甲基丙烯酸甲酯修饰二氧化硅壳来引入表面双键,并最终使用硫醇烯 - 硫代烯烯 - 硫代烯烯型化学方法。我们通过在逐步合成这些新染色剂的逐步指南后,在周围条件下在一个简单的过程中在一个简单的过程中染色的聚丙烯纱来证明这种方法的适用性。最后,可视化纱线的成功染色,并讨论了其实用性。
)ljxuh d +lvwrjudp uhsuhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvhvuhv vl]
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
光活性过渡金属复合物是结合高光稳定性和长发光寿命的发光体。但是,水溶液中的光学性能降低限制了它们在生物系统中的使用。在这里,研究了在聚合物纳米颗粒(NPS)中串联的二胺复合物和近红外复合物(NIR)发射Cy5染料的物理化学和光学物理特性以及生物成像的兼容性。通过改变聚合物,尺寸为20至70 nm,并封装为≤40wt的RE复合物,即每NP的≈11000re络合物。封装后,RE络合物的光致发光(PL)量子产率增加了8倍至≈50%(乙腈的6-7%),导致PL亮度高达10 8 m -1 cm -1,PL寿命为3-4μs。复杂激发后,CY5的串联可产生非常明亮的NIR发射。非常紧密的转到Cy5供体 - 受体距离降低至≤2nm,而货物官方超过90%则由PL寿命测量结果确定。Re-Cy5 NPS进入可见和NIR中的高对比度PL成像,进入哺乳动物细胞。这种详细的表征可以更好地理解过渡金属型FRET NP的光物理特性,并为迈出了新的一类新型明亮发光NP探针的效果设计的重要步骤。
由于经济发展的加速,世界的总能源消耗正在迅速增加,并且已经预测,到2050年需求将达到25多个TW [1]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。 此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。 科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。 后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。 在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。 这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。 由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。 在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。 电解器也受到使用昂贵的电极的限制[6]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。电解器也受到使用昂贵的电极的限制[6]。PV产生的能量可以暂时存储到Li-Batties中,但也可以用于创建高价值产品。使用我们可以使用的技术,建立高密度的能量分子键可能是最有效的方法。例如,3千克氢产生100 kWh的化学能,而450千克锂离子电池可以提供相同量的能量[5]。PV可以在电解层中将水分成O 2和H 2的偏置,但是需要多个连接来满足所需的过电球。可以通过使用光电化学细胞(PEC)来解决这些局限性,该设备能够由于水分解,有机氧化而获得可存储的太阳能燃料(例如卤素氧化,形成,新的C-C-C
在纳米尺度(1 纳米至 100 纳米 (10-9 米))上对结构、电子和系统进行操控被称为纳米技术 [ 1, 2]。金属纳米粒子,尤其是金纳米粒子 (AuNP),因其与入射光的奇妙相互作用而备受关注 [ 3]。在所有金属纳米粒子中,金纳米粒子因具有电、磁、生物传感、等离子体、光子、催化和生物医学特性,在近几十年来引起了最多的关注 [ 4 ]。金纳米粒子对生物医学应用做出了重大贡献,如免疫色谱病原体识别、药物输送、生物标记、光热疗法和癌症光诊断 [ 5 ]。AuNP 在尺寸、形状、溶解度、稳定性和功能方面的可控合成一直是人们研究的课题。合成 AuNPs 的方法通常可分为三类:化学方法、物理方法和生物方法 [6]。化学方法、物理方法和生物方法。合成 AuNPs 的另一种环保方法是通过称为“绿色合成”的生物技术。为了最大限度地减少传统 AuNPs 合成过程中产生的有害化学物质和有毒副产物,生物合成至关重要。目前,不同的 AuNPs 是使用绿色材料生产的,如植物、真菌、藻类、酶和生物聚合物 [7-9]。由于生物合成产生的 AuNPs 高度稳定且特征明确,因此在生物医学应用中使用它们通常更安全,因为这些化合物来自天然材料 [10]。已经采用了几种经济、环保且实用的技术来从微生物 [11]、植物提取物 [12] 中生产纳米颗粒。这些植物提取物在将金转化为纳米颗粒时充当封端剂和还原剂