(注2)核小体这是染色质的基本单位,是一种结构,其中大约150个DNA碱基对包裹在一个组蛋白八聚体周围,该组蛋白八聚体包含两个分子(H2A,H2B,H2B,H3,H4)中的四种分子。 (注3)冷冻电子显微镜A显微镜,其中包含蛋白质样品在极端低温的环境中冷冻,并用电子束观察到限制样品。通过拍摄大量图像,可以获得具有多种角度信息的粒子图像,并且可以从该信息中重建样品的三维结构。 (注4)氨基末端结构域(N末端结构域)在蛋白质末端的一个区域,该区域具有氨基群,最初是在蛋白质合成过程中合成的。 RAD51由两个球状结构域组成,其中一个球状结构域存在于氨基末端,一个与RECA同源的球状结构域。 (注5)L1回路区域该区域在与RECA同源的球状结构域中发现,对于与线性DNA结合很重要。联系(请联系演讲者以获取研究详细信息)Kurumizaka hitoshi教授,定量生命科学研究所,东京大学电话:03-5841-7826传真:03-5841-1468电子邮件:kurumizaka:kurumizaka [at] iqb.u-tokyo.ac.ac.jp procention nocation nocation jst Impaction jst Impact项目> Fumie Imabayashi电话:03-3512-3528传真:03-3222-2068电子邮件:Eratowww [at] jst.go..jp <与报告相关的询问>通用事务团队,定量生命科学研究所,东京大学电话:03-5841-781-781-781313 soumu [at] iqb.u-tokyo.ac.ac.jp日本科学技术局公共关系部电话:03-5214-8404传真:03-5214-8432电子邮件:
MMCT方法主要使用小鼠衍生的A9细胞和中国仓鼠衍生的CHO细胞作为染色体供体细胞,并将MB尺度的人类染色体(片段)引入人/小鼠干细胞中,并通过创建疾病模型和动物的创造来为生物学研究工具的开发。使用质粒载体和BAC载体的常规基因转移方法用于约5-200 kb的基因转移,使MB的尺度上的基因转移非常困难。另一方面,人类染色体引入方法通过使用人类单个染色体A9/CHO细胞库成功引入MB单元,该单元分别将染色体从1到22和X携带为染色体供体细胞。然而,保留在现有人类单染色体染色体A9/CHO细胞库中的人类染色体没有具有高染色体稳定性作为A9/CHO细胞的特征,从而导致部分染色体缺乏症和重排,从而使所需的人类染色体的长度很难以稳定的方式提供。此外,可以提供的染色体来自特定的人成纤维细胞系,导致缺乏遗传多样性。臀部细胞是一种极具吸引力的生物学资源,因为来自各种遗传背景(包括疾病患者)的人类衍生的细胞系显示了无限的增殖潜力,并且能够长期保持正常的染色体核型。该研究小组报告了一种新型高效的MMCT方法,其中使用紫杉醇(PTX)和反versin(Rev)生产微核细胞,将臀部细胞用作染色体供体细胞,并与CHO细胞融合。因此,在这项研究中,我们研究了是否可以通过使用PTX和Rev与不同的人IPS细胞产生的人IPS细胞衍生的微核细胞融合来引入染色体。
与常染色体不同,许多物种的性染色体对不会发生基因重组。有人提出,抑制重组是由自然选择造成的,这种自然选择倾向于将性别决定基因与这种染色体上的突变紧密联系在一起,这种突变对某一性别有利,而对另一性别不利(这被称为性拮抗突变)。目前尚未描述过这种选择导致抑制重组的例子,但孔雀鱼种群表现出性拮抗突变(影响雄性颜色),预计会进化出抑制重组。在孔雀鱼现存的近亲中,Y 染色体已抑制重组,并失去了 X 上的所有基因(这被称为基因退化)。然而,尽管孔雀鱼 Y 染色体携带性拮抗突变,但它偶尔会与 X 染色体重组。我们描述了孔雀鱼最近进化出一种新的 Y 染色体的证据,这种 Y 染色体来自与这些亲属相似的 X 染色体,取代了旧的、退化的 Y 染色体,并解释了为什么孔雀鱼配对仍然会重组。雄性着色因素可能在新的 Y 染色体进化之后出现,并且已经进化出仅限于雄性的表达方式,这是避免两性冲突的一种不同方式。
摘要 性别差异在正常发育、生理和疾病发病机制中普遍存在。最近的研究表明,Y 染色体的嵌合体丢失及其基因的异常激活可能会以男性偏向的方式改变疾病过程。这篇简短的评论讨论了人类 Y 染色体上基因的性质,并确定了两大类基因:与 X 同源物共享剂量敏感性功能的基因和具有睾丸特异性表达和功能的基因。前者的嵌合体丢失会破坏对维持健康至关重要的体内平衡,而后者的异常激活会促进非性腺组织的发病机制,从而导致男性对疾病的遗传易感性。关键词:Y 染色体、嵌合体丢失、伪常染色体区域、男性特异性区域、基因功能
摘要:鸟类(鸟纲)是陆地脊椎动物中种类最多的物种,具有类特异性特征,但外部表型多样性令人难以置信。鸟类对农业至关重要,也是模式生物,它们已经适应了许多栖息地。鸟类是恐龙的唯一现存例子,它们出现于约 1.5 亿年前,目前有 10% 以上濒临灭绝。这篇综述全面概述了鸟类基因组(“染色体”)组织研究,主要基于染色体涂绘和基于 BAC 的研究。我们讨论了可靠地生成染色体水平组装和以比以前更高的分辨率和更宽的系统发育距离分析多个物种的传统和现代工具。这些结果允许对染色体间和染色体内重排进行更详细的研究,为进化和物种形成机制提供独特的见解。“标志性”鸟类核型可能出现于约 2.5 亿年前,在大多数群体(包括灭绝的恐龙)中基本保持不变。例外包括鹦鹉形目、隼形目、隼形目、鹃形目、鲹形目,偶尔还有雀形目、鹳形目和鹈形目。这种显著保护的原因可能是二倍体染色体数目较大,通过更多可能的配子组合和/或增加重组率产生变异(自然选择的驱动因素)。更深入地了解鸟类基因组结构,可以探索与进化断点区域和同源连锁块的作用有关的基本生物学问题。
减数分裂通常是一个公平的过程:每个染色体都有50%的机会被包括在每个配子中。但是,与某些染色体相比,某些染色体比其他染色体更有可能变得异常。但是,为什么以及如何发展这种系统尚不清楚。在这里,我们研究了斑点的异常生殖遗传学,在男配子中,在男配子中仅包括母体染色体,而消除了父亲染色体。一种物种 - 伪球菌viburni - 一种隔离的B染色体,它通过消除父亲基因组消除而驱动。我们介绍带有和没有B染色体线的线的整个基因组和基因表达数据。我们确定了B连锁序列,包括204个蛋白质编码基因和卫星重复,占染色体的很大比例。B和核心基因组之间的几个PARA日志分布在整个基因组中,反对一个常染色体的简单或近期的染色体重复,以创建B。我们确实找到了一个373 Kb区域,其中包含146个基因,这似乎是最近的易位。最后,我们表明,尽管在减数分裂过程中表达了许多B连锁基因,但其中大多数是在最近易位的区域编码的。在减数分裂过程中,只有少数B-专有基因表达。在男性减数分裂过程中只有一个过表达,这是在驱动器发生的时候:乙酰基转移酶在H3K56AC中的乙酰基转移酶,在减数分裂中具有推定的作用,因此是进一步研究的有前途的候选人。
SNP微阵列分析是使用Affymetrix Oncoscan(TM)FFPE测定试剂盒进行的,其唯一目的是识别DNA拷贝数的收益和损失以及杂合性丧失的区域。该测定法利用了分子反转探针(MIP)技术,该技术已针对高度降级的FFPE样品(仅40个碱基对的探针询问位点)进行了优化。对于拷贝数,该测定法在选定的900个癌症基因中的分辨率为50-100 kb,在癌症基因之外的300 kb分辨率。镶嵌的检测阈值是可变的,具体取决于段的大小。CNV。收益和损失包括已知的临床意义癌症基因,或者在临床肿瘤学之外的3MB重要区域大于3MB,杂合性的丧失大于10MB。分析基于GRCH37组件。
在识别分子机器(包括折叠有丝分裂染色体的冷凝剂和拓扑异构酶)方面取得了巨大进展。通过环挤出产生染色质环路的发现彻底改变了染色体折叠的领域。要了解这些机器如何用适当的尺寸折叠染色体,同时解散姐妹染色单体,需要确定如何调节和部署它们。在这里,我们概述了当前对这些机器和因素如何通过细胞周期依赖性表达,染色质定位,激活和非活性来调节,通过翻译后修改以及通过与其他因素以及染色质模板本身相互关联。仍然有许多关于如何调节冷凝剂和拓扑异构酶的开放疑问,但考虑到染色体折叠式折叠型的速度,似乎在未来几年中,其中许多可能会得到回答。
蛋白质的分泌物蛋白质通过高尔基体从内质网流到质膜到质膜(5)。高尔基体中的分泌囊泡生物发生是涉及膜曲率,货物载荷和囊泡分裂的多步过程。每个步骤均由含有RAB家族成员的多蛋白复合物,ADP核糖基化因子,高尔基磷脂蛋白3(Golph3)和其他效应子(6-8)调节。这些复合物是由跨膜高尔基脚手架锚定在高尔基膜上的,该跨膜脚手架组织了专用于常见任务的客户蛋白(9)。高尔基脚手架蛋白上调,p53损失坐标是分泌驱动因素在p53缺陷型癌细胞中的作用(10,11)。因此,致癌突变通过高尔基体驱动分泌,以配合高尔基体中的分泌囊泡生物发生。鉴于有证据表明,染色体扩增子上的基因合作以协调共同的生物学过程(12),我们在这里假设染色体肿瘤的分泌囊泡生物创造的多阶段过程以建立高度的分泌状态。我们鉴定了一个3Q染色体区域,该区域在不同的肿瘤类型中得到扩增,并编码分泌囊泡生物发生的多个调节剂,包括高尔基脚手架Golgi Golgi积分膜蛋白4(GOLIM4)及其客户蛋白ATP蛋白ATP蛋白ATP蛋白ATP CA 2+
摘要最常见的基因调节机制是当转录因子(TF)蛋白与调节序列结合以增加或减少RNA转录时。但是,在搜索这些序列时,TFS面临两个主要挑战。首先,相对于基因组长度,这些序列消失了。第二,散布在整个基因组上的几乎相同的序列,导致蛋白质暂停搜索。,但正如大肠杆菌中LACI调节的计算研究中所指出的那样,如果考虑DNA循环,这种几乎目标可能会较低。在本文中,我们探讨了这是否也发生在整个染色体的距离上。为此,我们开发了一个跨尺度的计算框架,该框架结合了建立的促进式扩散模型,用于基地级搜索和一个捕获全染色体范围的飞跃的网络模型。为了使我们的模型逼真,我们使用HI-C数据集作为超过100 TF的长期DNA片段和结合曲线之间3D接近的代理。使用我们的跨尺度模型,我们发现指向单个目标的中位数搜索时间严重取决于网络组合的结合节点强度(链接权重的总和)和局部分离率。另外,通过随机化这些速率,我们发现某些实际的3D目标配置比随机对应物更快或较慢。这一发现暗示染色体的3D结构漏斗对于相关的DNA区域必不可少。