本文所述的产品(“产品”)的销售受亨斯曼高级材料有限责任公司的一般条款和条件,或其适当的会员(包括无限制的亨斯曼高级材料(欧洲)BVBA),亨斯曼高级材料Americas LLC或Huntsman Advance Americas LLC或Huntsman Advanced Materady(Hong Kong)Ltd.(“ Huntsman)”(“ Huntsman”)。以下是购买者的文件。Huntsman保证,在交货时,出售给买方的所有产品均应符合Huntsman提供给买方的规格(如果有)。虽然据亨斯曼的知识,本出版物中包含的信息和建议是准确的,截至出版日期,本文中没有任何内容(除了上述关于符合符合亨斯曼提供给买家的规范的符合规格的范围外,都应将其视为任何形式的代表性或保证,包括任何特定的权利,包括任何特定的授权,不限于符合任何权利,而不是限制了任何权利,否则有保证的性能,而不是符合任何权利的权利。或对先前描述或样本的质量或通信的保证,买方承担使用这种产品所产生的所有风险和责任,无论是单独使用还是与其他物质结合使用。此处提出的任何陈述或建议都不得解释为任何产品对购买者或用户的特定应用或侵犯任何专利或其他知识产权的适用性的表示。产品可能是或变得危险。买方有责任确定此类信息和建议的适用性以及任何产品出于其自身目的的适用性,并确保其对产品的预期使用不会侵犯任何知识产权。买方应从亨斯曼那里获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及适当的运输,处理和存储程序,并应遵守所有有关政府法律,法规和标准与处理,使用,使用,存储,分配,分配,分配以及对产品的处理,并遵守所有适用的政府法律,法规和标准。买方还应采取所有必要的步骤,以充分告知,警告和熟悉其员工,代理,直接和间接的客户和承包商,他们可能会处理或暴露于与安全处理,使用,存储,运输,运输和接触产品以及对产品以及产品以及产品的容器或设备的所有危害以及适当的程序以及适当的程序以及适用的产品以及适用的产品,以及该产品的产品,以及该产品的产品或销售的产品。
背景:市面上有各种各样的透明质酸 (HA) 填充剂产品,了解凝胶特性是根据每位患者的审美目标量身定制治疗方案的关键部分。本文介绍了使用 NASHA ® 和 OBT™ 生产的 HA 填充剂的两个主要凝胶特性——强度/硬度和柔韧性,以及它们对组织性能的临床意义。方法:在 25˚C 下,使用 PP25 流变测量系统以动态模式研究了三种 NASHA 凝胶(Restylane ®;Restylane Silk;Restylane Lyft)和四种 OBT 凝胶(Restylane Refyne;Restylane Kysse;Restylane Volyme;Restylane Defyne)。使用频率扫描测量凝胶强度/硬度,以 0.1 Hz 评估 G prime。柔韧性评估使用 1 Hz 下 0.1% 至 10,000% 应变之间的振幅扫描测量,其中 xStrain 是 G prime 和 G double prime 具有相同值的交叉点处的应变值。结果:Restylane、Restylane Silk 和 Restylane Lyft 的 G prime 分别为 701、416 和 799 Pa。Restylane Refyne、Restylane Kysse、Restylane Volyme 和 Restylane Defyne 的 OBT G prime 分别为 70、160、171 和 271 Pa。 xStrain 值分别为 1,442%(Restylane Refyne)、908%(Restylane Kysse)、930%(Restylane Volyme)、761%(Restylane Defyne)、7%(Restylane)、19%(Restylane Silk)和 17%(Restylane Lyft)。结论:OBT 产品具有高柔韧性(耐变形性)和低至中等强度/硬度,适合用于动态面部区域。NASHA 产品具有更高的强度/硬度,具有提升和突出的潜力。总而言之,NASHA 和 OBT HA 凝胶涵盖了广泛的强度和柔韧性。
摘要:本文介绍了一种将超薄硅芯片嵌入机械柔性阻焊层中并通过喷墨打印实现电接触的方法。将感光阻焊层通过保形喷涂涂覆到具有菊花链布局的环氧粘合超薄芯片上。使用紫外线直接曝光的光刻技术打开接触垫。实现了直径为 90 µ m 和边长为 130 µ m 的圆形和矩形开口。喷墨打印含有纳米银和金的商用油墨,以在菊花链结构之间形成导电轨道。应用了不同数量的油墨层。通过针探测来表征轨道电阻。银油墨仅在多层和 90 µ m 开口时才显示低电阻,而金油墨在至少两层印刷层时表现出个位数 Ω 范围内的低电阻。
结果79 80 Chalkophore缺乏结核分枝杆菌上调81对铜剥夺的响应中的呼吸链成分82 83以了解结核分枝杆菌中二甲依替替替替特里利的功能,我们检查了84
热电设备将热量转化为电能,不会产生温室气体排放,并有可能作为可穿戴设备的能源。目前的努力重点是设计既具有高转换效率又具有机械灵活性的材料。半赫斯勒材料(例如 TiNiSn)表现出良好的化学稳定性和热电效率,但它们固有的脆性对柔性设备的应用构成了挑战。在这里,TiNiSn 薄膜在室温下通过直流磁控溅射沉积,以研究它们对柔性设备应用的弯曲响应。因此,考虑了不同的基材:Si、Kapton、丝绸和打印纸,而 Si 被用作参考。分别采用能量色散 X 射线光谱和广角 X 射线散射分析沉积薄膜的成分和结构。通过扫描电子显微镜检查薄膜形态。此外,还采用密度泛函理论 (DFT) 探索柔性基板与非晶态 TiNiSn 之间的界面,并计算柯西压力,这是延展性/脆性行为的关键指标。非晶态 TiNiSn 薄膜对柔性 Kapton、丝绸和纸基板表现出良好的粘附性。施加机械载荷,即弯曲至 154 ◦,以评估裂纹形成,仅在 78 ◦ 和 154 ◦ 处出现少量裂纹,从而表明具有一定程度的柔性。DFT 数据支持这些发现,显示非晶态 TiNiSn 与柔性基板单体之间的粘附强度中等。计算出的柯西压力为 30 GPa,表明 TiNiSn 在非晶状态下具有延展性。因此,替代其他耗时的合成方法、消除对高温的需求以及提供对各种基板具有良好粘附性的无毒且经济高效的材料是非晶态 TiNiSn 薄膜成为柔性热电装置的良好候选材料的原因。
用猎户座纳米式机速度和精确地制造子10 nm纳米结构。使用其霓虹灯梁以极高的速度机器纳米结构并获得高吞吐量。使用氦束创建细腻的低于10 nm的结构,需要极高的加工保真度。为您的Orion Nanofab配备了可选的镀耐型纤维柱,它成为一种:世界上唯一涵盖了使用炮,霓虹灯,霓虹灯和氦离子光束整合到单个仪器中的微加工到纳米机械应用的系统。
摘要:药物转运蛋白在维持不同组织中的化学平衡和体内平衡中起着重要作用。除了它们的生理功能外,它们对于吸收,分布和消除许多临床上重要的药物至关重要,从而影响治疗效果和毒性。越来越多的证据表明,传染性,代谢,炎症和神经退行性疾病会改变药物转运蛋白的表达和功能。但是,当前对关键保护屏障(例如大脑和胎盘)中转运蛋白调节的知识仍然有限,需要更多的研究。例如,尽管许多研究都检查了P-糖蛋白,但很明显,缺乏对血液 - 脑屏障和血液 - 局部屏障中高表达转运蛋白的调节的研究。这篇评论的目的是总结当前可用的文献,以便更好地了解这些关键障碍中的运输者调节。
KLINGER ® Quantum - 独特的垫片材料,在高温下具有最高的柔韧性,符合 FDA 标准。这种独特的垫片材料的特点是将高品质纤维和填料化合物粘合在 HNBR 基质中,在高温下具有最大的柔韧性。KLINGER ® Quantum 是用于油、水、蒸汽、气体、盐溶液、燃料、酒精、中等有机和无机酸、碳氢化合物、润滑剂以及制冷剂的首选。