从顶部开始,四个柱状建筑都搁在一本开放书的基础上。四个支柱代表了人类生活的四个或目标,即佛法(道德生活),阿尔萨(物质繁荣),卡玛(情感成就)和莫克莎(Emancipation)(解放),开放书则表示学习的基础。综上所述,徽标的这一部分代表了一个学习的机构,可以通过在道德,实用,情感和精神价值观和知识的道德,实用,情感和精神价值和知识中为生活的四个目标而实现生活的四个目标,“ Yogaha karamasu kaushalam”是来自Bhagavad Gita的Yogaha Karamasu Kaushalam”,并从Bhagavad Gita中定义了Yoga Yoga Yoga Yoga Yoga Yoga Yoga as Perfectection。H.H.斯瓦米·拉玛(Swami Rama)是熟练,无私和充满爱心的表演的热心倡导者。中心的灯表示知识的光。天鹅是印度佛陀(歧视学院)的古典象征,因为据信天鹅可以将牛奶与牛奶和水的混合物分开。大学希望将这种佛教的质量赋予其学生,莲花是另一个古典的印度符号,表示植根于实用世界,但像莲花一样蓬勃发展,像莲花一样,它在沼泽的土壤中生长,但面对阳光在上面的阳光。莲花的藏红花颜色象征着超越外在世界的精神世界。“爱,服务,记住”一词代表了H.H.Swami Rama。 他敦促我们为我们的同胞提供亲切的服务,记得我们每个人都住在一起,对我们同胞的服务是神的崇拜的最佳形式。Swami Rama。他敦促我们为我们的同胞提供亲切的服务,记得我们每个人都住在一起,对我们同胞的服务是神的崇拜的最佳形式。盾牌代表了我们在与无知的战斗中的知识中的保护。
1.CACTI和生物多样性仙人掌是生物多样性的宝贵指标,强调了其本地栖息地中存在的多种生命形式和生态相互作用。研究仙人掌及其生态系统提供了对生物多样性的复杂动态的见解,以及保护这些独特而有价值的植物物种的重要性。适应恶劣的环境:仙人掌以其在极端条件(例如干旱沙漠)中生存的能力而闻名。它们的独特适应性,包括储物组织,减少叶片表面以最大程度地减少水分流失,以及保护食草动物的棘突,显示出植物已经发展为在挑战性的环境中发展为蓬勃发展的策略的显着多样性。物种多样性:仙人掌表现出广泛的物种多样性,属于仙人掌科家族的1,500多种已知物种。这种多样性包括各种大小,形状和生长习惯,从微小的球状仙人掌到高耸的柱状物种。每个物种都演变为占据特定的生态壁ches,这有助于其栖息地的整体生物多样性。栖息地多样性:仙人掌在美洲的各种栖息地中发现,从干旱的沙漠到热带雨林。它们在这种不同的环境中的存在突出了这些地区的生物多样性及其适应不同生态条件的能力。授粉与互助:仙人掌与蜜蜂,鸟类,蝙蝠和昆虫等传粉媒介进行了迷人的相互作用,这有助于其生态系统的生物多样性。许多仙人掌物种与特定的传粉媒介共同发展,形成了互助关系,从而使植物和传粉媒介受益。文化和经济重要性:仙人掌对人类社会具有重要的文化和经济意义。土著社区长期以来一直将仙人掌用于食品,医学和宗教仪式,强调了它们在传统知识系统中的重要性。此外,某些仙人掌物种,例如刺梨仙人掌(Opuntia),是为其可食用的水果而种植的,而另一些仙人掌物种则被视为花园和景观中的观赏植物。
本文介绍了对硫化物矿石的铜生物侵蚀的早期发展的简要回顾,并讨论了其从巴基斯坦从土著硫化物矿石沉积中提取铜的预期。铜的形式存在于辣椒(Cufes 2),辣椒(Cu 2 s),Covellite(Cus),Bornite(Cu 3 Fes 3),Enargite(Cu 3 Fes 3),Cu 3 Ass 4)和Tennantite(Cu 3 Ass 3),是最重要的重要铜(Cu 3 Ass 3),这是最重要的铜在硫化铜和甲型型号(柱状型)中,孢子型(Strate-Strate-contrancient and Strate-coundert)(硫化物沉积。黄铁矿(FES 2)和其他金属(Ni,Co,Mo,Zn等)硫化物矿物质也存在于硫化矿石沉积物中。在浸出溶液中硫酸盐(FES 2)(FES 2)的细菌氧化和Cu-硫化物矿物质(S)中,在浸出溶液中在浸出溶液中产生硫酸(H 2 SO 4),硫酸铁(Fe 2(So 4)3)和硫酸盐Cuso 4的硫酸和硫酸盐CUSO 4和氧硫化物矿物质(S)由酸性fe-氧化和氧化氧化剂进行了改良,从而产生。硫酸(H 2 SO 4)充当利克西(浸出剂)和硫酸铁(Fe 2(So 4)3)作为墨西哥铜矿的生物素质过程中的氧化剂(CUFES 2)。由于低pH值促进矿物质的质子攻击,并减轻了浸出溶液中金属的沉淀,因此生物无能的反应在pH 1.5-3.0处是最佳的。可溶性铜通过从酸性铜浸出液中的溶剂提取(SX)回收,在下游加工过程中进行了剥离/洗脱,然后进行电工(EW),以生产生物含量的铜铜(99.9%CU)产品。铜是从硫矿石和采矿废物中提取的,并使用堆和倾倒生物渗入过程在商业规模上提取。通过将残留物变成价值,这是一个独特的机会,可以在商业规模上引入创新的环境友好型铜提取技术,从而被认为是高度盈利的。可以将生物渗入过程用于提取Cu和相关的有价值的金属,从土著低级,截止等级,泡沫尾矿和硫化物矿床的采矿废物
摘要 陶瓷柱栅阵列封装由于其高互连密度、极好的热性能和电性能、与标准表面贴装封装装配工艺兼容等优点,其应用日益广泛。CCGA 封装用于逻辑和微处理器功能、电信、飞行航空电子设备和有效载荷电子设备等空间应用。由于这些封装的焊点应力消除往往比引线封装少,因此 CCGA 封装的可靠性对于短期和长期空间任务非常重要。对聚酰亚胺 CCGA 互连电子封装印刷线路板 (PWB) 进行了组装、无损检查,然后进行极端温度热循环,以评估其在未来深空、短期和长期极端温度任务中的可靠性。在本次调查中,采用的温度范围涵盖 185 C 至 +125 C 极端热环境。测试硬件由两个 CCGA717 封装组成,每个封装分为四个菊花链部分,总共需要监控八个菊花链。CCGA717 封装的尺寸为 33 毫米 x 33 毫米,具有 27 x 27 个 80%/20% Pb/Sn 柱阵列,间距为 1.27 毫米。菊花链 CCGA 互连的电阻作为热循环的函数进行连续监控。报告了电阻测量结果作为热循环的函数,迄今为止的测试表明,菊花链电阻随着热循环发生了显著变化。随着热循环次数的增加,互连电阻的变化变得更加明显。本文将介绍极端温度下 CCGA 测试的实验结果。使用标准威布尔分析工具提取威布尔参数以了解 CCGA 故障。光学检测结果清楚地表明,柱状元件与电路板和陶瓷封装的焊点在热循环过程中发生故障。第一次故障发生在第 137 次热循环中,63.2% 的菊花链故障发生在约 664 次热循环中。从威布尔图中提取的形状参数约为 1.47,这表明故障与标准浴盆曲线的平坦区域或使用寿命区域内发生的故障有关。基于此实验测试数据,可以使用 CCGA 进行 100 次热循环所研究的温度范围
需要支持多种机械和生物功能(如实现液体运输、促进再生和修复、抵抗不确定和随时间变化的机械需求)。[1–3] Wolf-Roux(机械稳态)定律表明,骨骼会随着机械需求的变化而沉积或吸收,[1,4,5] 指出优化在多尺度材料和结构的自然设计中发挥着作用。因此,结构优化是追求性能优化的仿生工程系统的一种很有吸引力的策略;然而,自然界中观察到的一系列功能极难完全融入基于优化的工程设计过程中。在这里,我们赋予结构优化方法和旋节线结构材料,这些材料模仿自然界中观察到的几种微观结构特征,这样我们就可以直接以设计中的刚度和轻量化为目标,并间接促进由微观尺度上的旋节线孔隙度和随机性促进的其他机械和生物功能。图1显示了在几种生物系统中观察到的微结构,这些微结构具有不同的孔径、孔形、密度和方向偏好,这些特征可以通过旋节线结构材料轻松模仿。旋节线结构材料是通过将旋节线相分解中的一个相解释为微结构材料而获得的。它们的非结构化、随机微结构特征已被证明可实现理想的工程性能(例如高机械弹性[9]、高能量吸收[10]和对缺陷不敏感[11]),这些性能通常超过结构化结构材料(例如桁架和板晶格)。此外,以高斯随机场(GRF)形式对旋节线相分解进行函数近似[12,13]可以广泛可调微尺度各向异性和孔隙率,从而实现显著的微结构设计自由。 [6] 底层函数表示也使得在任意方向和孔隙度的不同旋节线类(例如,图 1 中所示的各向同性、立方、层状和柱状结构)之间转换变得轻而易举。因此,旋节线结构材料为工程部件提供了一种途径,这些部件具有嵌入的、空间变化的微尺度特征,与结构化结构材料相比,这些特征提高了工程性能并增强了可制造性。旋节线结构材料的制造多功能性还使人们能够回归经典的多尺度
剑桥,鲁滨逊路,剑桥CB2 0RE,英国。§目前针对Douglas F. Browning的讲话,阿斯顿大学生物科学学院,伯明翰B4 7et,英国,摘要:Holliday 4-Way连接是重要的生物DNA过程的关键(插入,插入,推荐和维修),并且是富有成效的结构,是开放式或封闭式构造的动力结构,采用开放式构造表现出开放式的活跃形式。四元素金属 - 苏普拉电柱在圆柱核周围显示芳基面,从而使它们具有与开放式DNA连接的中心空腔相互作用的理想结构。结合了实验研究和MD模拟,我们表明,Au柱可以以开放形式结合DNA 4向连接(Holliday连接),这是一个以前由合成剂访问的结合模式。Au pil-larplexes也可以结合设计的三向连接,但是它们的尺寸较大,使他们可以打开并扩展该连接,破坏了基本配对,这表现出增加的流体动力大小和较低的连接热稳定性。在高载荷时,它们将4路和3路连接重新安排到Y形DNA叉中,以增加可用的连接样结合位点。结构相关的Ag菌粒显示出相似的DNA连接结合行为,但溶液稳定性较低。这种柱状结合与(但补充)的金属 - 苏普拉电圆柱体形成对比,该圆柱体更喜欢3路交叉,我们表明可以将4向连接点重新布置为3路交界结构。在人类细胞中的研究,确认柱子确实到达了细胞核,其抗增生活性的水平与顺铂相似。pillexes结合开放的四向连接的能力会产生令人兴奋的可能性,以调节和切换生物学中的这些结构,以及合成核酸纳米结构中,它们是关键的组件。这些发现提供了一个新的路线图,用于使用金属 - 苏普拉氨分子方法来靶向高阶连接结构,并扩展了可用于将生物活性连接器固定器设计到有机化化学的工具箱。
我们引入了一种杂种量子古典变异算法,以模拟热力学极限中沮丧的量子自旋模型的地面状态相图。该方法基于群集 - gutzwiller ansatz,其中群集的波函数由一个组成的量子电路提供,其关键的目标是允许在最近的neighbor qubits上产生价值的两倍真实的Xy闸门允许。附加可调的单量Z-和双Qubition Zz-旋转门允许描述杂志有序和顺磁性相,同时将变化优化限制为U(1)子空间。我们将其替补 - 标记了针对正方形晶格上的J 1 - J 2 Heisen-Berg模型,并覆盖了其相图,该模型的相图设有长距离订购的Néel和柱状反铁磁相,以及由2×2 我们的申请表明,算法的收敛性是由远程顺序的开始引导的,开辟了一种有前途的途径,以合成的方式实现沮丧的量子杂志,以及其量子相过渡到其向Parmagnetic Valence-Bond固体的量子固体,并以车程开发了超支电路电路。 杂种量子古典变异算法,即所谓的变分量子算法(VQA),是当前研究的中心,因为它们的潜力在提供了当前发达的噪声中等中等范围的量表量子(NISQ)设备方面的有用应用[1]。 它们由一个通用反馈循环组成,其中NISQ DECICE通过参数提供量子状态 -我们的申请表明,算法的收敛性是由远程顺序的开始引导的,开辟了一种有前途的途径,以合成的方式实现沮丧的量子杂志,以及其量子相过渡到其向Parmagnetic Valence-Bond固体的量子固体,并以车程开发了超支电路电路。杂种量子古典变异算法,即所谓的变分量子算法(VQA),是当前研究的中心,因为它们的潜力在提供了当前发达的噪声中等中等范围的量表量子(NISQ)设备方面的有用应用[1]。它们由一个通用反馈循环组成,其中NISQ DECICE通过参数提供量子状态 -
图2幼虫SEZ的感觉域:长度截面视图。(a,b)幼虫晚期SEZ的示意性侧面视图(a)和腹侧视图(b)。感觉隔室的颜色编码如(a)底部的钥匙所述。进入神经胶质的神经是阴影灰色的;神经组边界和柱状神经胶质结构域由孵化线表示。(c - e)用PEB-GAL4> UAS-MCD8-GFP(绿色;感觉轴突)标记的第三龄幼虫标本的共聚焦部分的Z-Projections。抗神经毒素(洋红色)标记次生谱系和区域; Neuropil在所有面板中均由抗DN-钙粘蛋白(蓝色)标记。(c)中央神经胶质结构域的副臂板z预测。(d,e)表面水平的水平投影(d;神经皮腹面上方约10米)和中央水平(E;腹表面上方约20 l m;参见面板H)。孵化的线划分柱神经型结构域的边界,如随附的纸张所定义(Hartenstein等,2017)。在PEB-GAL4阳性区域的(E)点中的箭头从CSC感觉域继续向前向中央trito-Cerebrum前进; (e)中的箭头指示通过触角神经进入的感觉传入,然后绕过触角(Al)到达tritoceRebrum。(f,g)。第三龄幼虫SEZ晚期的副臂切片(F)和数字旋转的额叶(G)的Z-projctions显示了PEB-GAL4阳性感觉末端(绿色)和纵向轴突段与Anti-Fasticlin II(Magenta)标记的纵向轴突。绿色孵化线表示(d)和(e)中显示的水平平面。(H)幼虫SEZ的示意性横向视图,说明了该图和图3中的面板(d,e)中显示的Z射击平面。Blue hatched lines, oriented perpendicularly to the neuraxis and roughly parallel to neuromere boundaries (grey hatched lines), represent frontal planes at level of anterior half of prothoracic segment (T1ant), posterior half of prothoracic segment (T1post), tritocerebrum (TR), mandibula (MD), maxilla (MX), and labium (lb),图3的面板(a - f)中显示。bar:25 L m(c - g)
在世界上,人类严重或深刻的耳聋的估计患病率是1000名新生儿中的1个,遗传因素占了一半的病例。 GJB2的致病变异,编码连接蛋白26的基因,涉及50%的先天性耳聋,主要与常染色体隐性遗传性非伴有伴有伴有dfnb1a有关。 在耳蜗中,GJB2在感官上皮,纤维细胞,基底和中间细胞的血管毛血管的辅助细胞(SC)中主要表达,但在感觉毛细胞中却没有。 据推测,CX26对于钾的回收至关重要,这对于感觉毛细胞的正确功能至关重要,但是体内研究还表明CX26缺乏会导致耳蜗发育障碍。 基因疗法是一种有前途的聋哑形式的有前途的治疗策略,并且正在为此目的而开发与腺相关的载体(AAV)(AAVS)。 在这里,我们开发了GJB2-GT,这是DNFB1A的腺相关病毒(AAV)载体(AAV)载体,可在小鼠和非人类灵长类动物中均提供GJB2表达内耳gjb2表达细胞的广泛覆盖范围。 gjb2-gt通过圆形窗口(RW)传递到先天性聋哑的GJB2突变小鼠耳朵中。 对条件GJB2的gjb2-GT对有条件的小鼠内耳的注射会导致听力阈值在注射后3周以剂量依赖的方式改善。 对持续的队列,剂量反应实验,早期生物分布和毒理学研究的功效正在研究中。 并行,使用人类使用的手术和装置将GJB2-GT用于非人类灵长类动物(NHP)。在世界上,人类严重或深刻的耳聋的估计患病率是1000名新生儿中的1个,遗传因素占了一半的病例。GJB2的致病变异,编码连接蛋白26的基因,涉及50%的先天性耳聋,主要与常染色体隐性遗传性非伴有伴有伴有dfnb1a有关。在耳蜗中,GJB2在感官上皮,纤维细胞,基底和中间细胞的血管毛血管的辅助细胞(SC)中主要表达,但在感觉毛细胞中却没有。据推测,CX26对于钾的回收至关重要,这对于感觉毛细胞的正确功能至关重要,但是体内研究还表明CX26缺乏会导致耳蜗发育障碍。基因疗法是一种有前途的聋哑形式的有前途的治疗策略,并且正在为此目的而开发与腺相关的载体(AAV)(AAVS)。在这里,我们开发了GJB2-GT,这是DNFB1A的腺相关病毒(AAV)载体(AAV)载体,可在小鼠和非人类灵长类动物中均提供GJB2表达内耳gjb2表达细胞的广泛覆盖范围。gjb2-gt通过圆形窗口(RW)传递到先天性聋哑的GJB2突变小鼠耳朵中。对条件GJB2的gjb2-GT对有条件的小鼠内耳的注射会导致听力阈值在注射后3周以剂量依赖的方式改善。对持续的队列,剂量反应实验,早期生物分布和毒理学研究的功效正在研究中。并行,使用人类使用的手术和装置将GJB2-GT用于非人类灵长类动物(NHP)。在这两种物种中均进行了GJB2-GT研究的早期耐受性和生物分布。 手术后三周,ABR测量和DPOAE振幅保留在NHP的正常听力阈值范围内,表明GJB2-GT耐受性良好。 分析了注射的内耳的整个安装和冷冻切片,以评估AAV的偏向主义。 对于这两种产品,绝大多数自然表达GJB2的SC,包括大上皮脊细胞,侧皮脊细胞,边界细胞,圆锥细胞,柱状细胞,侧壁的纤维细胞,侧壁和螺旋状肢体的纤维细胞沿着负轴轴线进行传播。 在内毛细胞中未发现转导。 GJB2-GT允许有效,安全地靶向自然表达GJB2在耳蜗中的细胞,并具有与人类治疗干预兼容的水平。 这些数据支持GJB2-GT开发,并构成了我们未来的临床试验迈出的重大步骤,以恢复DFNB1A患者的生理听力。在这两种物种中均进行了GJB2-GT研究的早期耐受性和生物分布。手术后三周,ABR测量和DPOAE振幅保留在NHP的正常听力阈值范围内,表明GJB2-GT耐受性良好。分析了注射的内耳的整个安装和冷冻切片,以评估AAV的偏向主义。对于这两种产品,绝大多数自然表达GJB2的SC,包括大上皮脊细胞,侧皮脊细胞,边界细胞,圆锥细胞,柱状细胞,侧壁的纤维细胞,侧壁和螺旋状肢体的纤维细胞沿着负轴轴线进行传播。在内毛细胞中未发现转导。GJB2-GT允许有效,安全地靶向自然表达GJB2在耳蜗中的细胞,并具有与人类治疗干预兼容的水平。这些数据支持GJB2-GT开发,并构成了我们未来的临床试验迈出的重大步骤,以恢复DFNB1A患者的生理听力。
肠上皮由一层柱状上皮细胞组成,该细胞在养分吸收和代谢的调节中履行重要功能,并在腔膜的腔微生物群和免疫细胞之间形成结构性屏障。线粒体主要以它们在能量产生中的功能而闻名,但也参与了许多细胞过程(包括代谢,免疫和应激反应)的调节。线粒体功能障碍与衰老和稳定增长的人类疾病有关。有影响线粒体功能的突变患者通常会出现多种胃肠道症状,例如剧烈的体重减轻,肠道衰竭和伪阻断,以及与营养不良相关的严重腹部疼痛。线粒体在肠道中的功能,尤其是在肠中运输和分泌脂质时,仍然鲜为人知。为了检查线粒体在肠道中的作用,我们创建了用肠上皮细胞(IEZ)特定的Dars2的小鼠,这些小鼠被称为dars2 iez-ko小鼠。dars2是一种线粒体特异性的asparyl-tRNA合酶,可促进13 mtDNA编码的Oxphos亚基的线粒体翻译。缺乏DARS2最终导致呼吸链功能障碍非常明显。连续五天连续五天对他莫昔芬进行给药,导致dars2在成人2 fl/fl villin-creer t2小鼠(dars2 tamiez-ko小鼠)的IEZ中消融。dars2 iez -ko小鼠出生于预期的孟德尔疾病,但出现了自发的表型后产后,该表型以严重的体重减轻,低血糖和繁荣的疾病来表达。对这些小鼠的肠道组织的组织学检查导致了受干扰的组织结构,这与上皮干细胞的损害,增殖和分化以及大脂质滴中脂质的大量积累有关。令人惊讶的是,只有近端小肠的肠细胞才能在dars2 tamiez -ko小鼠中散落在包括脂肪在内的食物中的营养物质的有效吸收,动员和运输,含有大脂肪(Lipid Plostlet,LD,LD)。此外,具有IEZ特异性消融的小鼠琥珀酸脱氢酶(SDHA)是电子传输链CII的一部分,也是TCA循环的酶,以及cytrome C-氧化酶组装因子HEM A:纤维群Transylesyltansyltansylansylansylansfrassefase(Coceryltransferase)Is One One OneS110 IS,一率, IEZS中使用CIV的组装因子。sdha iez -ko和cox10 iez -ko小鼠均显示出与dars2 iez -ko小鼠相似的表型。这些小鼠的体重显着降低,无法在四个星期的时间内生存,并且在肠细胞中显示出大量的LD富集。综上所述,这些发现表明缺乏线粒体会导致肠肠细胞中LD的积累,这表明线粒体功能的丧失会损害食物脂肪的运输。肠细胞记录的数字脂质是重生的,并由甘油三酸酯脂蛋白组成,尤其是以酪蛋白(CM)的形式组成,然后将其释放到血液中,以便为外围器官提供脂质。有趣的是,以无脂肪的饮食喂养可以防止dars2 tamiez -ko小鼠的肠球细胞中LDS的脂肪累积,这表明