3.1 1200 V 器件准则 ...................................................................................................................................... 7
本研究通过采用高介电常数电介质材料来提高19nm单栅极MOSFET的性能。通过采用高K电介质材料代替SiO2,可以满足MOSFET器件尺寸缩小趋势的要求。因此,实现了具有不同高K电介质材料的19nm n沟道MOSFET器件,并分析了其性能改进。通过Silvaco TCAD工具中的ATHENA模块进行虚拟制造。同时,使用ATLAS模块利用器件特性。还对上述材料进行了模拟,并与相同结构的传统栅极氧化物SiO2进行了比较。最后,结果证明,氧化钛(TiO2)器件是金属栅极钨硅化物(WSix)组合的最佳介电材料。该器件 (WSix/TiO2) 的驱动电流 (ION) 在阈值电压 (VTH) 为 0.534 V 时为 587.6 µA/um,而预测的目标值为 0.530 V,并且 IOFF 相对较低,为 1.92 pA/µm。该 ION 值符合国际半导体技术路线图 (ITRS) 2013 年对低性能 (LP) 技术预测的最低要求。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
硅是电子中使用的主要材料。电力电子的演变以及对更多功率效率的半导体设备的需求,将硅带到了极限。碳化硅是一种具有宽带隙,高临界电场,高温电导率和饱和速度的电子应用的有希望的材料。除了其优越性,碳化硅碳化物具有与硅2界面相比,在SIC/SIO 2界面中的界面陷阱的缺点大约有两个数量级。此缺点的结果是将压力在MOS电容器和功率MOSFET的门上施加应力时,带有带电压的转移。为了研究SIC/SIO 2界面的纯特性,两种应力方法,当前的脉搏应力和栅极电压升压,已应用于室温和较高温度下的硝基氧化物的4H-SIC电容器上。检查了频段电压恢复。可以在室温下恢复频带电压,而在较高温度下则不需要恢复,而在室温下可以恢复。研究了最大电压(初始电压)和下降的电压速率,并显示出更高的初始电压和较低的电压速率,显示出更好的V FB恢复。实施了200毫秒的电流脉冲应力,并且几乎具有与持续50秒的电压上升相似的影响。
亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
在半桥应用中对交叉传导的灵敏度增加 这两种影响都可以通过使用负栅极驱动电压来减轻。但这种方法也有缺点,因为负栅极驱动会导致反向(第三象限)操作中的电压降增加,从而导致死区期间的传导损耗更高。因此,最佳栅极驱动始终取决于基本应用条件(硬/软开关、功率等级、开关电压、频率等)。本白皮书简要概述了 GIT 和 SGT 产品系列的推荐栅极驱动概念。多功能标准驱动器(RC 接口)可以轻松适应这两种技术。本文档还提供了基本的栅极驱动器尺寸指南和一些典型的应用示例。
通过在各种开关条件下进行长期测试,研究了英飞凌 CoolSiC™ MOSFET 的这种现象的特点。数据显示,开关应力会导致 V GS(th) 随时间缓慢增加。然而,无论选择何种参数,都从未观察到由开关引起的负 V GS(th) 漂移。在相同工作条件下承受应力的不同器件的 V GS(th) 漂移值相似。阈值电压 V GS(th) 的增加会降低 MOS 沟道过驱动 (V GS(on) – V GS(th) ),因此可以观察到沟道电阻 (R ch ) 的增加。这种现象在公式 [1] 中描述,其中 L 是沟道长度,W 是沟道宽度,μ n 是自由电子迁移率,C ox 是栅极氧化物电容,V GS(on) 是正导通状态栅极电压,V GS(th) 是器件的阈值电压 [2]。
1 苏黎世联邦理工学院理论物理学系,苏黎世 8093,瑞士 2 悉尼大学物理学院 ARC 工程量子系统卓越中心,悉尼,新南威尔士州 2006,澳大利亚 3 太平洋西北国家实验室,美国华盛顿州里奇兰 99354 4 华盛顿大学物理系,美国华盛顿州西雅图 98195 5 悉尼大学微软量子中心,悉尼,新南威尔士州 2006,澳大利亚 6 普渡大学 Birck 纳米技术中心,印第安纳州西拉斐特 47907,美国 7 普渡大学微软量子中心,印第安纳州西拉斐特 47907,美国 8 普渡大学物理与天文系,印第安纳州西拉斐特 47907,美国 9 普渡大学材料工程学院和电气与计算机工程学院,印第安纳州西拉斐特47907,美国 10 Microsoft Quantum,雷德蒙德,华盛顿州 98052,美国
近年来,随着半导体技术进入10nm以下技术节点,短沟道效应(SCE)和功耗耗散问题成为场效应晶体管进一步小型化面临的巨大挑战,需要采取强制性措施予以解决。从3nm技术节点开始,环绕栅极结构提高的SCE抑制能力使环绕栅极场效应晶体管登上了历史舞台。本文展示了双栅极纳米管环绕栅极场效应晶体管(DG NT GAAFET)的超强静电控制能力,并与具有相同器件参数设计的纳米管(NT GAAFET)和纳米线环绕栅极场效应晶体管(NW GAAFET)进行了比较。与NT GAAFET和NW GAAFET相比,DG NT GAAFET的I on 分别提升了62%和57%。此外,由于静电控制的增强,DG NT GAAFET 中的 SCE 得到了明显抑制,这可以通过改善 I off 、SS 和 I on /I off 比来证明。另一方面,NT GAAFET 的 I on 与 NW GAA-FET 相当,而与 NW GAA-FET 相比,它的 I off 小 1 个数量级,SS 小近 2 倍,体现了纳米管通道结构的优越性。最后,通过 TCAD 模拟研究验证了纳米管通道结构,特别是双栅极纳米管结构对 L g 缩放的稳健性。关键词:双栅极,纳米管,纳米线,短沟道效应,功耗耗散。