Abstract 本研究的目的是通过使用可见光相机来调查眼动参数来估计汽车驾驶期间的心理负荷(MWL)。本研究涉及 12 名学生(6 名男性和 6 名女性)。参与者同时使用驾驶模拟器执行驾驶任务和次要任务,以控制MWL。N-back任务的级别如下:无、0-back。 , 1-回,使用可见光相机测量 2-back 和 3-back 的视线和头部角度以及眨眼频率,根据视线和头部角度计算眼球旋转角度,即头部运动的比率。还测量了 N-back 任务的主观 MWL 和准确性,结果表明,随着 N-back 任务难度的增加,主观 MWL 单调增加。 N-back 任务具有统计显着性对水平和垂直注视角度的标准差(SD)、眼球水平旋转角度的标准差、水平方向头部运动的共享率以及眨眼频率进行Logistic回归分析,结果显示,眼球水平旋转角度的标准差和眨眼频率的标准差(SD)。眨眼频率是估计 MWL 的最重要参数 受试者工作特征 (ROC) 曲线的曲线下面积 (AUC)
总体分布显示为较暗的 PDF。样本大小为 N=10 的均值估计 X-bar 的抽样分布显示为较浅的 PDF(类似于最后一张幻灯片上的直方图)。如果 sigma 是总体分布的标准差,那么 sigma 除以 N 的平方根就是 X-bar 抽样分布的标准差。根据中心极限定理,该分布渐近正态,随着 N 的增大,越来越接近正态。
摘要:脑电图 (EEG) 广泛应用于临床应用和基础研究。干脑电图为游戏和神经反馈期间的自我应用等新领域开辟了应用领域。在记录过程中,信号总是受到伪影的影响。手动检测坏通道是凝胶和干脑电图的黄金标准,但很耗时。我们提出了一种简单而强大的方法,用于自动检测脑电图中的坏通道。我们的方法基于对每个通道标准差的迭代计算。这些标准差的统计测量可作为坏通道检测的指标。我们将新方法与从手动识别的脑电图记录坏通道获得的结果进行了比较。我们分析了闭眼静息状态下的脑电图信号和头部运动数据集。结果显示,凝胶和干脑电图的静息状态脑电图准确率为 99.69%。对于两种设置中带有头部运动的数据集,我们的新方法的准确率为 99.38%。手动识别不良通道的黄金标准与我们的迭代标准差方法之间没有显著差异。因此,所提出的迭代标准差方法可用于静息态和运动脑电图记录中的不良通道检测。
11-OH-THC 11-羟基-A9-四氢大麻酚 ANWB Algemene Nederlandse Wielrijders Bond(荷兰皇家旅游协会) BAC 血液酒精浓度 CS-C 闭眼身体摇晃测试的曲线表面 CS-O 睁眼身体摇晃测试的曲线表面 CTT 关键跟踪测试 CV-H '间隔时间的变异系数(SDIM) CV-IBI 心跳间隔时间的变异系数(SD/M) DOT 交通部 ECG 心电图 EtOH 乙醇 IBI 心跳间隔时间 MANOVA 多元方差分析 NHTSA 国家公路交通安全管理局 NIDA 国家药物滥用研究所 PWR-HR 心率功率密度谱在 .01 和 .14 Hz 频率之间的相对幅度 RT 反应时间 SD 标准差 SDLP 心率的标准差横向位置 SDSP 速度标准差 SDST 方向盘角度标准差 SE 标准误差(即SD 除以观测次数的平方根) SED 平均差异标准误差 SP 平均速度 THC W- 四氢大麻酚 THC-COOH 11-正-b9-四氢大麻酚-9-羧酸
摘要:脑电图 (EEG) 广泛应用于临床应用和基础研究。干脑电图为游戏和神经反馈期间的自我应用等新领域开辟了应用领域。在记录过程中,信号总是受到伪影的影响。手动检测坏通道是凝胶和干脑电图的黄金标准,但很耗时。我们提出了一种简单而强大的方法,用于自动检测脑电图中的坏通道。我们的方法基于对每个通道标准差的迭代计算。这些标准差的统计测量可作为坏通道检测的指标。我们将新方法与从手动识别的脑电图记录坏通道获得的结果进行了比较。我们分析了闭眼静息状态下的脑电图信号和头部运动数据集。结果显示,凝胶和干脑电图的静息状态脑电图准确率为 99.69%。对于两种设置中带有头部运动的数据集,我们的新方法的准确率为 99.38%。手动识别不良通道的黄金标准与我们的迭代标准差方法之间没有显著差异。因此,所提出的迭代标准差方法可用于静息态和运动脑电图记录中的不良通道检测。
当需要估计标准差时,经常需要合理选择样本量。在许多情况下,将估计的允许误差从绝对误差改为相对误差是可以接受的,并且可以对样本量问题进行精确的先验解,而无需涉及任何先前的估计。在许多实际工程情况下,需要估计特征的线性离散度。这样的例子有低空炸弹瞄准器的纵向或范围误差,或测量设备的误差。与工程师合作的经验表明:1)他掌握了标准差作为离散度度量的概念;2)他接受将样本标准差表示为在先前商定的正常总体真实值的百分比范围内的概念; 3) 他对置信系数有足够的直观理解,愿意采取相应的行动。因此,有一种快速的方法可以告诉他获取不同置信系数的各种置信区间内的估计值所需的样本量。这些估计值是将真实标准差的置信区间的半长表示为真实标准差的百分比。为估计这一点所需的样本量而提出的解决方案不使用任何先前的离散估计或其真实值,因此适用范围很广。假设正在对正态总体进行抽样。让 82 成为总体 o2 的平方标准差的估计值,使得 ns2/o-2 分布为具有 n 个自由度的 X2。那么 s2 的平均值将为 E(s2) = u2,其中 u2 是真实但未知的总体方差。设 0 如果我们知道概率{s>(1+u)u} =pi,以及概率{s<(1-u)u} =P2,那么 s 位于 u 的给定分数 u 内的时间比例将是已知的。 pi 和 P2 的值是通过以下关系获得的。如果我们知道概率{s>(1+u)u} =pi,以及概率{s<(1-u)u} =P2,那么 s 位于 u 的给定分数 u 内的时间比例将是已知的。pi 和 P2 的值是通过以下关系获得的。
补充图 4:药物反应与 CDKN2A 缺失相关。DSS 3 对 (A) 克拉屈滨、(B) 氯法拉滨、(C) 帕比司他和 (D) 莫西替诺他的反应的平均值和标准差,按 CDKN2A 状态分组(突变和深度缺失合并为缺失)。每个点代表一个单独的细胞系。中心线为平均值,括号为标准差。使用 Mann-Whitney 检验确定显著性,** p < 0.01,* p < 0.05。