这项工作的目的是探索机器学习工具在分析与新物理学相关的数据中的潜力,特别是超出标准模型。在数据集分析中也给出了一些基本概念,因为它也构成了这项工作的重要组成部分。该项目遵循一种结构化方法,首先是对在虚拟环境中获得的超出标准模型过程的ATLAS开放数据分析Z'→TT进行检查。分析数据被转换为逗号分隔值(CSV)文件,以在Python笔记本中处理。一旦以这种格式进行数据,就会开发代码以重新创建虚拟机中观察到的相同图。要建立一个神经网络,重要的是要首先不明显哪些变量表现出很强的相关性。然后将CSV文件中的数据分为三个相等的组分开:一个用于培训,一个用于验证,另一个用于均等的测试。通过应用监督的机器学习技术,神经网络被开发,即E ff可以分辨地区分信号和背景。
列出了一些搜索标准模型玻色子的超对称伙伴的电动伴侣和带电的瘦素的搜索结果的组合。所有搜索都使用质子 - 普罗顿碰撞数据在2016年至2018年在LHC上记录的CMS检测器记录的proton-proton碰撞数据。分析的数据对应于高达137 fb -1的集成光度。结果是用简化的超对称模型来解释的。使用这种组合添加了两种新解释:与Bino作为最轻的超对称粒子的模型频谱,以及质量分类的希格斯诺诺斯(Higgsinos)衰减到Bino和标准模型玻色子,以及先前研究的Slepton对生产模型的压缩 - 光谱区域。采用了改进的分析技术来优化Wino和Slepton对生产模型中压缩光谱的灵敏度。结果与标准模型的期望一致。组合比单个搜索提供了模型参数空间的更全面的覆盖范围,将排除量最多扩大了125 GEV,并且针对质量覆盖范围中的一些中间差距。
Higgs玻色子生产时间衰减速率和差异横截面的测量最近通过Atlas实验在几个衰减通道中使用了多达139 fb-1的proton-Proton碰撞数据,该衰减通道在大型Hastron Collider处记录了Proton-Proton碰撞数据的139 Fb-1。本文介绍了这些希格斯玻色子测量的多种解释。根据标准模型有效的现场理论运算符的影响,对不同衰减通道中的生产模式横截面,简化模板横截面和基准差异横截面进行了测量,并报告了对相应的Wilson系数的约束。的生产和衰减率测量值在标准模型的UV完全扩展中进行解释,即在对齐限制限制附近的两种型二键型模型(2HDM)和各种MSSM基准标准场景的最小超对称标准模型(MSSM)。2HDM参数(cos(cos(𝛽 -𝛼),tan 𝛽)和MSSM参数(tan 𝛽,tan𝛽)的约束与直接搜索其他Higgs玻色子获得的约束是互补的。
列出了一些搜索标准模型玻色子的超对称伙伴的电动伴侣和带电的瘦素的搜索结果的组合。所有搜索都使用Proton-Proton碰撞数据√s= S = 13 TEV在2016 - 2018年在LHC处记录的CMS检测器。分析的数据对应于高达137 fb -1的集成光度。结果是用简化的超对称模型来解释的。使用这种组合添加了两种新解释:与Bino作为最轻的超对称粒子的模型频谱,以及质量分类的希格斯诺诺斯(Higgsinos)衰减到Bino和标准模型玻色子,以及先前研究的Slepton对生产模型的压缩 - 光谱区域。采用了改进的分析技术来优化Wino和Slepton对生产模型中压缩光谱的敏感性。结果与标准模型的期望一致。组合提供了模型参数空间的更全面的覆盖范围,而不是分裂搜索,将排除量最多扩大了125 GEV,并且针对质量覆盖范围中的一些中间差距。
使用单个电子或μ子事件和处于终态的喷流来测量顶夸克对 ( t ¯ t ) 的极化和自旋关联。测量基于 CMS 实验收集的 LHC 在 ffiffiffi sp ¼ 13 TeV 处的质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 t ¯ t 系统的质量和 t ¯ t 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联中,应用佩雷斯-霍罗德基标准得出关于 t ¯ t 自旋纠缠的结论。标准模型预测在生产阈值和 t ¯ t 系统质量较高时,t ¯ t 态将发生纠缠自旋。这是首次在高 t ¯ t 质量事件中观察到纠缠,其中大部分 t ¯ t 衰变是空间分离的,预期和观测显著性均高于 5 个标准差。
场景是业务功能之间关系的图形概述。例如,采购、库存控制和入站计划与处理之间的关系。这些场景是跨职能的,并在动态企业建模器中设置为业务控制图。这些场景基于供应链运营参考模型 (SCOR)。SCOR ® 模型是供应链管理的全球标准模型,也是全球最广泛接受的评估和比较供应链活动及其绩效的框架。SCOR 模型基于三大“支柱”:
虽然对NATURE量子机械的模拟进行模拟的第一个建议可以追溯到Richard Feynman 1,但最近尝试将量子化理论应用于高能物理系统研究的最新尝试已被证明是特别成功的。As a paradigmatic example quantum state tomography, a procedure that allows full re- construction of the density matrix of a system by perform- ing a complementary series of measurements on an ensem- ble of identical copies of the system under scrutiny 2 , is ide- ally applicable to colliders, where large numbers of events are generated 3–6 , and has been applied to numerical simulation studies of various high energy particle physics systems 4–7 。量子算法,包括量子机学习技术,是为了识别Standard模型和数据8-10中的签名,以及对撞机事件的更计算经济模拟11。这些结果验证了粒子物理和量子信息的两个领域之间的预期一致性(标准模型基于量子场理论,这是量子理论),但可以进一步利用这种联系背后的数学细节,从而导致对这两个领域的新见解。在本文中,我们确定了choi-jamiolkowski同构12或状态通道二重性,是一种理论原理,使量子信息理论在计算标准模型散射振幅的计算中系统地应用,并认为值得以下原因引起粒子物理社区的注意。
摘要 . 本文从更广泛、更哲学的角度讨论了今年诺贝尔物理学奖,该奖项旨在表彰纠缠实验“打破贝尔不等式,开创量子信息科学”。该奖项以诺贝尔奖的权威性为“经典”量子力学之外的一个新科学领域赋予了合法性,该领域与泡利的“粒子”能量守恒范式有关,因而也与遵循该范式的标准模型有关。人们认为,最终的未来量子引力理论属于新建立的量子信息科学。纠缠因其严格描述、非幺正性以及非局域和超光速物理信号“幽灵般地”(用爱因斯坦的华丽词藻)同步和传输超距非零作用而涉及非厄米算子,可以被认为是量子引力,而根据广义相对论,它的局域对应物就是爱因斯坦引力,从而开辟了一条不同于标准模型“二次量化”的量子引力替代途径。因此,纠缠实验一旦获得诺贝尔奖,将特别推出以“量子信息科学”为基础的量子引力相关理论,因此被认为是广义量子力学共享框架中的非经典量子力学,它遵循量子信息守恒而不仅仅是能量守恒。宇宙“暗相”的概念自然与已得到充分证实的“暗物质”和“暗能量”相联系,而与经典量子力学和标准模型所固有的“光相”相对立,后者遵循量子信息守恒定律,可逆因果关系或能量与信息的相互转化是有效的。神秘的大爆炸(能量守恒定律普遍成立)将被一种无所不在、无时不在的退相干介质所取代,这种介质将暗相和非局域相转化为光相和局域相。前者只是后者的一个整体形象,事实上它更多地是从宗教而不是科学中借用的。今年的诺贝尔物理学奖预示着一种范式转变,随之而来的是物理、方法论和适当的哲学结论。例如,科学的思维理论也应该起源于宇宙的暗相:可能只是由物理上完全属于光相的神经网络近似地建模。打破泡利范式带来了几个关键的哲学序列:(1)建立了宇宙的“暗”相,与“明”相相对,只有对“暗”相,笛卡尔的“身体”和“精神”二分法才有效;(2)量子信息守恒与暗相相关,进一步将能量守恒推广到明相,有效地允许物理实体“从虚无中”出现,即,来自暗阶段,其中能量和时间彼此不可分割;(3)可逆因果关系是暗阶段所固有的;(4)引力仅从数学上解释:作为有限性对无限性的不完整性的一种解释,例如,遵循关于算术与集合论关系的哥德尔二分法(“要么矛盾,要么不完整性”);(5)层次结构概念仅限于光阶段;(6)在暗阶段,量子的两个物理极端与整个宇宙的可比性遵循量子信息守恒,类似于库萨的尼古拉斯的哲学和神学世界观。关键词:经典量子力学、宇宙的暗相和明相、暗能量和暗物质、爱因斯坦、能量守恒、纠缠、广义相对论、量子力学中的厄米量和非厄米量、局域性和非局域性、泡利粒子范式、量子引力、量子信息、量子信息守恒、量子比特、标准模型、幺正性和非幺正性
激光、量子计算/加密、太阳能工作原理、电子显微镜、粒子波二象性、超导/超流体/低温科学、玻色-爱因斯坦凝聚、激光冷却、原子光谱、核光谱、核反应堆、核武器、核磁共振成像的工作原理、粒子束癌症治疗、放射性/半衰期/核废料、宇宙射线及其对进化的影响、标准模型(至少是我们由上、下夸克组成)、大部分纳米技术、纠缠、波函数、量子密码学、能带理论和材料科学、强核力和弱核力、核合成和我们由星尘组成的想法、质谱、粒子和核加速器……