(https://maps.ccom.unh.edu/portal/apps/webappviewer/index.html?id=28df035fe82c423cb3517295d9 bbc24c#. 2021 年 12 月 10 日) ........................................................................................................................... 20 图 19:R/V Gulf Surveyor (http://ccom.unh.edu/facilities/research-vessels/rv-gulf-surveyor)。 .......... 21 图 20:RVGS 图,其中包含关键位置和拖曳点相对于船舶参考点的偏移(未按比例绘制)。 ............................................................................................................................. 21 图 21:安装了拖缆的 R/V Gulf Surveyor 甲板上的 Klein 4K-SVY 侧扫。 ............................................................................................. 23 图 22:具有声学阴影、距离尺度、第一次回波和水柱的典型 SSS 数据示例。 ........................................................................................................................................................... 24 图 23:带有集成表面声速探头的 Kongsberg EM2040P MBES。 (https://www.kongsberg.com/maritime/products/ocean-science/mapping-systems/multibeam-echo- sounders/em-2040p-mkii-multibeam-echosounder-max.-550-m/) ........................................................................... 25 图 24:安装在 R/V Gulf Surveyor 中心支柱上的 EM2040P(照片:NOAA 的 Patrick Debroisse 中尉)。 ........................................................................................................................................... 26 图 25:在 50m 范围内布置用于位置置信度检查的 SSS 线。 ........................................................................... 27 图 26:相对于 MBES 目标位置(红色)的 SSS 接触位置(蓝色)。 ......................... 28 图 27:地理参考框架和船舶参考框架中的接触位置误差。接触位置主要位于 MBES 位置的东面。 ......................................................................... 28 图 28:应用地图校正后的 SSS 接触位置。 ......................................................................... 29 图 29:应用地图校正后,在地理和船舶参考框架中看到的 SSS 接触位置 ............................................................................................................................. 29 图 30:测量区域,其中 60m 和 80m 线路平面图以红色显示。 ........................................................................... 30 图 31:掩盖马赛克(左)隐藏接触,透过马赛克(右)显示接触。 ...... 32 图 32:使用自动所有数据,显示应用增益和定位校正之前的所有线路的 SSS 马赛克。覆盖在 RNC 13283 上。...................................................................................................... 33 图 33:使用 Auto-All 数据可视化应用地图校正和 EGN 后的 SSS。....... 34 图 34:DTM(顶部)显示折射伪影,与 ping 数据(底部)中看到的伪影相同。...................................................................................................................................................................... 35 图 35:EM2040P MBES 数据的全覆盖 DTM............................................................................................................. 36 图 36:EM2040P 数据从天底滤波到 45º 后的 DTM。............................................................................. 37 图 37:EM2040P 以 300 kHz 和 50cm 分辨率收集的 MBAB。西北采集点在左侧,东南采集点在右侧。后向散射强度以分贝表示,默认比例为 10 到 -70dB。 ........................................................................................................................... 38 图 38:调整后的 NW MBES 数据可视范围为 -4 至 -28db.................................... 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。........................................ 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。............................................................................................................. 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。............................................................................................. 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红色框突出显示了沙波应重叠的区域。............................................................................. 42 图 43:NW 采集站点:叠加之前的 MBES(顶部)、SSS(中)和 MBES 后向散射(底部)。 ........................................................................................................................................................... 44 图 44:SE 采集点:叠加前的 MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)。 ........................................................................................................................................... 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45
约翰·H·鲁贝尔口述历史访谈——JFK#2,09/09/70 管理信息 创建者:约翰·H·鲁贝尔 采访者:威廉·W·莫斯 采访日期:1970 年 9 月 9 日 采访地点:新泽西州西奥兰治 长度:59 页 个人简介 美国国防部国防研究与工程战略武器部助理主任,1959 年 - 1961 年;国防研究与工程部助理部长,1961 年 - 1962 年。 在这次采访中,鲁贝尔讨论了为国防部工作的承包商、通信卫星和导弹系统等问题。 部分访问开放 使用限制 根据 1973 年 5 月 23 日签署的赠与契约,这些材料的版权在受访者去世后转给美国政府。建议这些材料的用户确定他们希望发布的任何文件的版权状态。版权 美国版权法(美国法典第 17 章)管辖对受版权保护材料的影印或其他复制品的制作。在法律规定的某些条件下,图书馆和档案馆有权提供影印或其他复制品。这些规定条件之一是影印或复制品不得“用于除私人学习、学术或研究之外的任何其他目的”。如果用户请求影印或复制品,或之后将其用于超出“合理使用”范围的目的,则该用户可能要承担版权侵权责任。如果本机构认为履行订单会违反版权法,则本机构保留拒绝接受复印订单的权利。版权法将其保护范围扩大到以有形形式创作的未出版作品。有关版权的问题请直接咨询参考人员。 口述历史访谈记录 这些电子文档是根据约翰·肯尼迪图书馆研究室提供的记录创建的。使用光学字符识别扫描了这些记录,并根据原始记录校对了生成的文本文件。进行了一些格式更改。页码被标注在原始记录页面底部的位置。如果研究人员对准确性有任何疑虑,我们鼓励他们访问图书馆并查阅记录和采访录音。
美国农业部 (USDA) 食品和营养服务局 (FNS) 管理着 16 个营养援助计划,其使命是与合作组织合作,通过为儿童和低收入人群提供食物、健康饮食和营养教育,以支持美国农业并激发公众信心的方式提高粮食安全并减少饥饿。儿童营养计划,例如国家学校午餐计划 (NSLP) 和学校早餐计划 (SBP),每天为数百万儿童提供营养均衡、低成本或免费的午餐。这些计划由学校食品管理局 (SFA) 管理,这些机构由一所或多所学校组成,这些学校会获得报销以提供符合联邦要求的膳食。COVID-19 疫情从 2019-2020 学年 (SY) 开始对学校膳食运营产生了重大影响。疫情扰乱了学校餐饮服务中使用的食品、设备和其他用品的供应链以及劳动力市场。虽然经济状况在某些方面有所改善,但影响食品和劳动力成本和可用性的问题仍然存在。为了向各州和儿童营养计划运营商提供尽可能好的支持,FNS 一直在与 SFA 合作,以收集有关当前学校食品挑战的及时和准确信息。第一次学校食品管理局供应链中断调查收集了 2021-2022 学年 1 期间供应链中断范围的信息,第二次调查针对 2022-2023 学年进行。2 FNS 于 2024 年 1 月 29 日至 2024 年 3 月 19 日通过 20 分钟的在线问卷进行了学校食品管理局关于供应链中断和学生参与的调查 III。调查问卷被发送给所有在学校运营儿童营养计划 3 的 SFA,以收集有关 2023-2024 学年期间持续供应链中断的影响的信息。调查的回复率为 71%,所有州和地区的 SFA 都做出了回应。以下结果加权 4 以具有全国代表性。整个报告中的米色标注框中包含了来自开放式回答的说明性引述。
Month, Day, 2022 Dear [POC], The Commerce Department's Bureau of Industry and Security (BIS), Office of Technology Evaluation (OTE) is conducting a comprehensive assessment of the U.S. Civil Space Industrial Base (CSIB) in partnership with the National Aeronautics and Space Administration (NASA), Office of the Administrator, and the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (nesdis)。您的组织已被确定为NASA或NOAA的直接供应商,也可以是任何一个机构多层供应链的一部分。您的组织的参与对于确保评估的全面数据集至关重要。ote过去曾与行业密切合作,涉及美国工业基础部门的各种评估,我们预计您在这项工作上有类似的合作。这项调查的主要目标是更好地了解国内CSIB供应链网络。收集的数据将有助于确定参与CSIB的组织的结构和相互依赖性,尤其是NASA和NOAA系统和子系统。这项工作将使NASA和NOAA能够理解并应对供应链缺陷以及与减少制造源和物质短缺(DMSMS),外国采购和依赖关系,网络安全事件,关键矿产和材料,COVID-19 PANDEMATIC的大量影响以及其他挑战有关的供应链缺陷和中断。您的组织是由联邦法律(50USC§4555)要求在收到这封信后30天内完成民用太空工业基础调查的。感谢您的合作。由此产生的数据和随后的分析将使行业代表和政府政策官员更好地监控趋势,基准行业绩效并提高人们对潜在问题的认识。根据1950年《国防生产法》(DPA)的规定,所有提交给BIS的信息均被修改为业务机密,并且不会以汇总形式出版或公开披露。任何时间都不会报告您的特定组织。此类信息也受到信息法案(FOIA)请求的披露。要开始,请在https://bis.doc.gov/dib下载Microsoft Excel-Formatted调查和相应说明。出于内部数据收集目的,调查的PDF版本包含标注框,显示下拉菜单选择,也可以在此网站上下载。ote只能通过https://respond.census.gov/csib的人口普查网站接受Excel调查提交。调查和说明也可以在此网站上找到。如果您对调查有任何疑问,则可以通过电子邮件csibsurvey@bis.doc.gov或通过电话(202)482-7808通过电子邮件为您提供帮助。电子邮件是首选的,将允许对任何查询更彻底地了解和响应。我们期待与您合作。
部分 全部更改 • 重新排序并合并部分以反映 ULA 品牌 • 删除第 10 部分并将内容移至第 8 和第 9 部分 • 将“Delta 计划办公室”替换为“ULA” • 在整个简介中进行细微更正 • 进行细微更新以与整个指南保持一致 第 1 部分 • 添加了升级的 RS-68A 第一级发动机信息(第 1.2.1 段) • 添加了机队标准化计划信息(第 1.2.1.1 段) • 更新了运载火箭徽章的最大尺寸(第 1.4 段) 第 2 部分 • 更新了图 2-4 和 2-6 以反映 RS68A 时间安排 • 将最大任务操作时间更新为 8.0 小时(第 2.2.3 段) • 删除了飞行终止系统约束信息 • 更新了 3-σ 轨道精度以反映通用航空电子设备(参见图 2-8) • 删除了最近的 Delta IV 任务(之前的图 2-8) • 更新了 Delta IV 任务能力(图2-9) • 更新了 Delta IV 车辆性能曲线的图号(图 2-10) • 更新了性能曲线图形(图 2-11 至 2-18) • 从图 2-10 和性能曲线第 3 节中删除了 Delta IV M+(5,2) • 增加了复合整流罩空调进气口位置(图 3-2 和 3-3) • 澄清了东部和西部靶场的环境控制规范(图 3-4 和 3-5) • 澄清了清洁度水平(第 3.1.5 段) • 澄清了 SC 兼容性演示(第 3.2.5 段)第 4 节 • 将任务集成和安全部分合并为一个部分 • 彻底修改之前的“有效载荷集成”部分,以与当前的 ULA 集成流程保持一致 • 增加了有关悬浮负载暴露的政策信息;终端计数期间的“T-10 秒”航天器保持呼叫;航天器与运输、吊装和发射环境的兼容性;以及航天器/运载火箭功能接口以确保任务成功(第 4.2.4 至 4.2.7 段)第 5 节 • 删除了 1194 和 1666 PAF • 添加了 4293-5 PAF(图 5-1 和第 5.2.3 段) • 添加了 C 型适配器(图 5-23 和第 5.3.1 段) • 添加了 937、1194、1666 和 6915 有效载荷适配器(图 5-23 和第 5.3.5 段) • 更新了 PAF 的功能和图表第 6 节 • 删除了对过时参考资料的标注第 7 节 • 将东部和西部靶场信息合并为一个部分 • 更新了设施、流程和计划信息
章节更改全部 • 重新排序并合并章节以反映 ULA 品牌 • 删除第 10 节并将内容移至第 8 和第 9 节 • 将“Delta 计划办公室”替换为“ULA” • 在整个简介中进行细微更正 • 进行细微更新以与整个指南保持一致 第 1 节 • 添加了升级的 RS-68A 第一级发动机信息(第 1.2.1 段) • 添加了机队标准化计划信息(第 1.2.1.1 段) • 更新了运载火箭徽章的最大尺寸(第 1.4 段) 第 2 节 • 更新了图 2-4 和 2-6 以反映 RS68A 时间安排 • 将最大任务操作时间更新为 8.0 小时(第 2.2.3 段) • 删除了飞行终止系统约束信息 • 更新了 3-σ 轨道精度以反映通用航空电子设备(参见图 2-8) • 删除了最近的 Delta IV 任务(之前的图 2-8) • 更新了 Delta IV 任务能力(图 2-9) • 更新了 Delta IV 车辆性能曲线的图号(图 2-10) • 更新了性能曲线图形(图 2-11 至 2-18) • 从图 2-10 和性能曲线第 3 节中删除了 Delta IV M+(5,2) • 增加了复合整流罩空调进气口位置(图 3-2 和 3-3) • 澄清了东部和西部靶场的环境控制规范(图 3-4 和 3-5) • 澄清了清洁度等级(第 3.1.5 段) • 澄清了 SC 兼容性演示(第 3.2.5 段)第 4 节 • 将任务集成和安全部分合并为一个部分 • 彻底修订之前的“有效载荷集成”部分,以与当前的 ULA 集成流程保持一致 • 增加了有关悬浮负载暴露的政策信息;终端计数期间的“T-10 秒”航天器保持呼叫;航天器与运输、吊装和发射环境的兼容性;以及航天器/运载火箭功能接口以确保任务成功(第 4.2.4 至 4.2.7 段)第 5 节 • 删除了 1194 和 1666 PAF • 添加了 4293-5 PAF(图 5-1 和第 5.2.3 段) • 添加了 C 型适配器(图 5-23 和第 5.3.1 段) • 添加了 937、1194、1666 和 6915 有效载荷适配器(图 5-23 和第 5.3.5 段) • 更新了 PAF 的功能和图表第 6 节 • 删除了对过时参考资料的标注第 7 节 • 将东部和西部靶场信息合并为一个部分 • 更新了设施、流程和计划信息
章节更改全部 • 重新排序并合并章节以反映 ULA 品牌 • 删除第 10 节并将内容移至第 8 和第 9 节 • 将“Delta 计划办公室”替换为“ULA” • 在整个简介中进行细微更正 • 进行细微更新以与整个指南保持一致 第 1 节 • 添加了升级的 RS-68A 第一级发动机信息(第 1.2.1 段) • 添加了机队标准化计划信息(第 1.2.1.1 段) • 更新了运载火箭徽章的最大尺寸(第 1.4 段) 第 2 节 • 更新了图 2-4 和 2-6 以反映 RS68A 时间安排 • 将最大任务操作时间更新为 8.0 小时(第 2.2.3 段) • 删除了飞行终止系统约束信息 • 更新了 3-σ 轨道精度以反映通用航空电子设备(参见图 2-8) • 删除了最近的 Delta IV 任务(之前的图 2-8) • 更新了 Delta IV 任务能力(图 2-9) • 更新了 Delta IV 车辆性能曲线的图号(图 2-10) • 更新了性能曲线图形(图 2-11 至 2-18) • 从图 2-10 和性能曲线第 3 节中删除了 Delta IV M+(5,2) • 增加了复合整流罩空调进气口位置(图 3-2 和 3-3) • 澄清了东部和西部靶场的环境控制规范(图 3-4 和 3-5) • 澄清了清洁度等级(第 3.1.5 段) • 澄清了 SC 兼容性演示(第 3.2.5 段)第 4 节 • 将任务集成和安全部分合并为一个部分 • 彻底修订之前的“有效载荷集成”部分,以与当前的 ULA 集成流程保持一致 • 增加了有关悬浮负载暴露的政策信息;终端计数期间的“T-10 秒”航天器保持呼叫;航天器与运输、吊装和发射环境的兼容性;以及航天器/运载火箭功能接口以确保任务成功(第 4.2.4 至 4.2.7 段)第 5 节 • 删除了 1194 和 1666 PAF • 添加了 4293-5 PAF(图 5-1 和第 5.2.3 段) • 添加了 C 型适配器(图 5-23 和第 5.3.1 段) • 添加了 937、1194、1666 和 6915 有效载荷适配器(图 5-23 和第 5.3.5 段) • 更新了 PAF 的功能和图表第 6 节 • 删除了对过时参考资料的标注第 7 节 • 将东部和西部靶场信息合并为一个部分 • 更新了设施、流程和计划信息
章节更改全部 • 重新排序并合并章节以反映 ULA 品牌 • 删除第 10 节并将内容移至第 8 和第 9 节 • 将“Delta 计划办公室”替换为“ULA” • 在整个简介中进行细微更正 • 进行细微更新以与整个指南保持一致 第 1 节 • 添加了升级的 RS-68A 第一级发动机信息(第 1.2.1 段) • 添加了机队标准化计划信息(第 1.2.1.1 段) • 更新了运载火箭徽章的最大尺寸(第 1.4 段) 第 2 节 • 更新了图 2-4 和 2-6 以反映 RS68A 时间安排 • 将最大任务操作时间更新为 8.0 小时(第 2.2.3 段) • 删除了飞行终止系统约束信息 • 更新了 3-σ 轨道精度以反映通用航空电子设备(参见图 2-8) • 删除了最近的 Delta IV 任务(之前的图 2-8) • 更新了 Delta IV 任务能力(图 2-9) • 更新了 Delta IV 车辆性能曲线的图号(图 2-10) • 更新了性能曲线图形(图 2-11 至 2-18) • 从图 2-10 和性能曲线第 3 节中删除了 Delta IV M+(5,2) • 增加了复合整流罩空调进气口位置(图 3-2 和 3-3) • 澄清了东部和西部靶场的环境控制规范(图 3-4 和 3-5) • 澄清了清洁度等级(第 3.1.5 段) • 澄清了 SC 兼容性演示(第 3.2.5 段)第 4 节 • 将任务集成和安全部分合并为一个部分 • 彻底修订之前的“有效载荷集成”部分,以与当前的 ULA 集成流程保持一致 • 增加了有关悬浮负载暴露的政策信息;终端计数期间的“T-10 秒”航天器保持呼叫;航天器与运输、吊装和发射环境的兼容性;以及航天器/运载火箭功能接口以确保任务成功(第 4.2.4 至 4.2.7 段)第 5 节 • 删除了 1194 和 1666 PAF • 添加了 4293-5 PAF(图 5-1 和第 5.2.3 段) • 添加了 C 型适配器(图 5-23 和第 5.3.1 段) • 添加了 937、1194、1666 和 6915 有效载荷适配器(图 5-23 和第 5.3.5 段) • 更新了 PAF 的功能和图表第 6 节 • 删除了对过时参考资料的标注第 7 节 • 将东部和西部靶场信息合并为一个部分 • 更新了设施、流程和计划信息
说明:此表格由根据国防部手册 5200.45《原始分类机构和编写安全分类指南》的要求发布的每个 SCG 的发起人执行。SCI、SAP、ACCM 控制的 SCG、被归类为最高机密级别的 SCG 以及分发受限的 SCG 将不会发送到 DTIC。但是,为了保持 SCG 的准确列表,必须向 DTIC 和 DDI(CL&S) 提交 DD 2024。如果 SCG 的标题是机密的,则将注释该标题的非机密简短形式。所需操作:a. 此表格和 SCG 的副本(不包括如上所述的豁免)将上传到 DTIC。有关说明,请参阅 DoDM 5200.45。b.由于以下原因提交的 DD 2024 将通过电子邮件发送至 DTIC,地址为 dtic.belvoir.ecm.mbx.acquisitions@mail.mil: (1) SCG 取消 (2) OCA 转移 (3) SCG 无法发布在 DTIC 存储库 c. 所有 DD 2024 的副本将通过电子邮件发送至 OUSD(I&S)/DDI(CL&S)/CTP,地址为 osd.pentagon.rsrcmgmt.list.ousd-intel-infosec-mbx@mail.mil 第 1 块。选择提交的原因。对于每个原因,请包括适用的日期。 • 新 SCG。包括 SCG 的日期。 • 修订。包括修订日期。 • 5 年审查。包括进行审查的日期。 • 取消。包括取消 SCG 的日期。 • OCA 转移(一个 SCG 被转移到另一个 OCA) SCG 的原先机构将向 DTIC 发送 DD 2024 以提醒 DTIC 转移事宜。接收机构将提交一份标注正确信息的 DD 2024。所有 DD 2024 都将通过电子邮件发送至 dtic.belvoir.ecm.mbx.acquisitions@mail.mil • 取代。包括被取代的 SCG 的完整名称及其 DTIC 加入文件编号。第 2 块。提供 SCG 上显示的完整 SCG 名称。如果该标题是机密的,请提供未分类的简称或唯一标识符。第 3 块。说明。简要说明本指南涵盖的内容。第 4 块。输入签署 SCG 的 OCA 的职位名称和组成部分。从下拉菜单中选择组成部分。第 5 块。选择 SCG 的总体分类。块 6. 指出 SCG 是否可通过 DTIC 获得或将可通过。如果不可,请从下拉菜单中选择原因。块 7. 记录 DTIC 接入文件编号。每当向 DTIC 提交新的或更新的 SCG 时,都会分配一个新编号。此编号将输入后续 DD 2024 中,以便将来采取行动(例如,五年审查、取消、OCA 转移)。块 8. 输入组件分配的 ID 编号(如果适用)。块 9. 指出 DoDI 5230.24“技术文档的分发声明”中的哪个分发声明已应用于 SCG。从下拉菜单中选择原因。
ME 201 动力学 (3-0-3) 粒子直线和曲线运动的运动学。粒子和粒子系统的动力学。刚体的旋转和平面运动的运动学。功和能量关系。冲量和动量原理。平面运动中的刚体动力学。先决条件:CE 201。ME 203 热力学 I (3-0-3) 系统和控制体积概念。纯物质的性质。功和热。应用于系统和控制体积的热力学第一定律、内能、焓。热力学第二定律。卡诺循环、熵、可逆和不可逆过程。稳态、稳流、均匀态、均匀流和其他过程的应用。先决条件:MATH 102、PHYS 102 ME 204 热力学 II (3-0-3) 蒸汽动力循环、兰金循环、再热循环和再生循环。麦克斯韦关系、理想气体和真实气体、状态方程、广义图表。气体-蒸汽混合物、湿度图、理想溶液。化学反应。燃料和燃烧过程。先决条件:ME 203。ME 205 材料科学(针对非 ME 学生)(2-3-3)工程材料特性简介:机械、电气和化学。晶体学基础。固体中的杂质和缺陷。原子振动和扩散。单相金属和合金;弹性和塑性变形、再结晶、断裂、疲劳和蠕变。多相材料;重点是铁-铁碳化物系统的相图。热处理工艺,如退火、正火和淬火。广泛使用的工程材料的研究;钢铁、塑料、陶瓷、混凝土和木材。先决条件:CHEM 102、MATH 102 ME 210 机械工程制图与图形 (2-3-3) 通过研究正交投影对机器部件和组件进行图形解释,包括辅助视图;剖面图和全尺寸标注;将设计说明转化为详细图和装配图;绘图惯例,包括焊接件、管道、参考和表面光洁度符号;根据设计要求选择公差。先决条件:无 ME 216 材料科学与工程 (3-0-3) 固体中的原子键合、键合力和能、一次键和二次键。固体中的杂质和缺陷:点、线和界面缺陷。晶体结构、晶格、晶胞和晶体系统、密度计算、晶体方向和平面、线性和平面原子密度。原子振动和扩散。材料的机械性能。弹性和塑性变形和再结晶。单相和多相材料的相图,重点是铁-铁碳化物系统(钢和铸铁)。金属和合金的热加工:退火、正火、淬火和回火、复合材料、聚合物。冲击、断裂、疲劳和蠕变特性以及断裂力学简介。先决条件:CHEM 101、MATH 102、PHYS 102 和共同要求:ME 217