在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在矿井狭小的空间内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 米的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成校正算法将误差降低至 0.6%。空气尘埃测试表明,在超过联邦法律允许的浓度水平(7.5 倍)时,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度
在开采和运输煤炭的过程中,操作员在矿井狭窄的空间内可能会被移动机械撞击或抓住。解决此问题的方法是使用运输设备上的导航系统,以便它跟随开采煤炭的机器。这本质上涉及基于传感器的机器对接。能够在恶劣的矿井环境中生存的传感器起着关键作用,这些环境包括灰尘、甲烷气体和水。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装载到运输设备中。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。但是,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场,范围为 0.1 至 18.0 m。 对于单目标模式,在距离 3.56 m 时,标称范围精度为 4.3%。 生成校正算法将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,准确度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个主动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III 的制导系统。当前操作场景 跟随采矿机器的运输系统在商业上不存在。这样的系统可以减少当前运输采矿设备造成的死亡和伤害,并且是当前运输控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
摘要。电池管理系统在电动汽车中起着至关重要的作用。电池的充电和排放不当会改变电池的化学特性,从而降低其寿命。电池充电状态(SOC)是设计电池管理系统的重要参数。在其标称温度上方操作电动汽车电池会导致电池爆炸,这可能会导致人类损失。因此,必须正确监控电池的温度。为了减少电池的排放深度,基于SOC的充电控制器在Arduino和开发的控制算法的帮助下设计。当电池的SOC低于阈值时,该开发的算法会停止电动汽车的运行,并在电池温度超出标称范围时发出警报。这确保了电动汽车中锂离子或锂聚合物电池的安全和正确处理。
图5显示了所选城市中每个车辆类别的电范围;这些是基于开放实验室收集的累积旅行计算的值。请注意,此方法引入了一些不确定性。例如,数据可能在工作条件上分布不均。此外,还可以引入数值舍入错误。样品中的卡车型号似乎适合300公里以下的操作。拖车拖车通常用于货物的长途运输;一项调查显示,在中国,拖拉机拖车在2020年平均每天约300公里。7此数据集中拖拉机拖车模型的标称范围为190 km,我们发现了大约130 km至140 km之间的现实世界范围。在该范围内,如果每天两次充电,该模型将能够进行中范围的驾驶和货运。
6.TB8-标准型号参考标准:EN 13190。标称范围:-50°C至+600°C。测量范围:-40°C至+500°C;从-40℃至500℃的连续测量。准确度等级:根据 EN 13190,测量范围为 1 级,过热:温度 ≤ 400°C 时为满量程值的 30%;限制过热,500°C。特殊过温(选项 F02):温度 ≤150°C 时为背景值的 100%;温度在 150 °C 至 300 °C 之间时为满量程值的 50%。环境温度:-40…+65℃。最大工作压力:15 bar(不含护套)。防护等级:IP 55 符合 EN 60529/IEC 529 标准。 过程连接:AISI 316 材质。 浸入:ø 6 毫米 (cod. 6 )、ø 6.4 毫米 (cod. 7 )、ø 8 毫米 (cod. 8 )、ø 9.6 毫米 (cod. 9 ),AISI 316 材质。