透明质酸(HA)是一种天然存在的非硫磺糖胺聚糖(GAG),与细胞表面相关的生物聚合物,是组织细胞外基质(ECM)的关键组成部分。以及出色的物理化学特性,HA还具有多方面的生物学作用,其中包括但不限于ECM组织,免疫调节和各种细胞过程。环境提示,例如组织损伤,感染或癌症改变HA的下游信号传导功能。与天然HA不同,HA的碎片对炎症,癌症,纤维化,血管生成和自身免疫反应具有多样化的影响。在这篇综述中,我们旨在将HA作为一种治疗性递送系统开发过程,来源,生物物理化学特性以及天然和碎片HA的相关生物学途径(尤其是通过细胞表面受体)。我们还试图概述HA(天然HA与片段)在调节炎症,免疫反应和各种癌症靶向递送应用中的潜在作用的概述。本评论还将详细讨论了基于HA的治疗系统,医疗设备和未来观点。
EBI2受体的内源配体,氧化酚7α,25OHC,至关重要的免疫反应,受CH25H,CYP7B1和HSD3B7酶的细节调节。淋巴样细胞和T细胞卵泡中的卵泡树突状细胞保持7α,25OHC的梯度,基质细胞增加,树突状细胞降低了其浓度。该梯度对于淋巴组织中适当的B细胞定位至关重要。在多发性硬化症的动物模型中,实验性自身免疫性脑脊髓炎,7α的水平,25OHC迅速增加了中枢神经系统的迅速增加,驱动EBI2通过血脑屏障(BBB)表达免疫细胞的迁移。要探索脑中的血管细胞是否表达这些酶,我们检查了正常的小鼠脑微孔塞尔,并研究了它们在炎症过程中表达的变化。EBI2在内皮细胞,周细胞/平滑肌细胞和星形胶质细胞端层中大量表达。CH25H,CYP7B1和HSD3B7在每种细胞类型中都被多样检测,这表明它们在氧化酚7α,25OHC合成和在不同条件下的梯度维持和梯度维持。在EBI2中出现了明显的物种特异性差异以及小鼠和人类BBB形成细胞之间的酶水平。在急性炎症条件下,EBI2和合成酶调节下发生在大脑中,基于酶的大小和方向。最后,在体外星形胶质细胞迁移模型中,CYP7B1抑制剂氯吡唑以及EBI2拮抗剂NIBR189抑制了脂多糖诱导的细胞迁移,表明EBI2及其在炎症下脑细胞迁移的脑细胞迁移中的配体受到了侵略。
检测生物运动对于适应性社会行为至关重要。先前的研究已经揭示了这种能力背后的大脑过程。然而,生物运动感知过程中的大脑活动会捕捉到多种过程。因此,我们通常不清楚哪些过程反映了运动处理,哪些过程反映了建立在运动处理基础上的次要过程。为了解决这个问题,我们开发了一种新方法来测量与观察到的运动直接相关的大脑反应。具体来说,我们向 30 名成年男性和女性展示了一个以 2.4 Hz 的速度移动的点光源步行器,并使用 EEG 频率标记来测量与该速度相关的大脑反应(“运动标记”)。结果显示,在步行频率下有一个可靠的反应,而两种已知会破坏生物运动感知的操作会降低这种反应:相位扰乱和反转。有趣的是,我们还发现了步行频率一半(即 1.2 Hz)的大脑反应,这对应于各个点完成一个周期的速率。与 2.4 Hz 响应相比,对于乱序步行者(相对于未乱序步行者),1.2 Hz 响应有所增加。这些结果表明,频率标记可用于捕捉生物运动的视觉处理,并且可以在大脑信号的不同频率下分离涉及生物运动感知的全局(2.4 Hz)和局部(1.2 Hz)过程。
未标记的数据出现在许多域中,并且与流应用程序特别相关,即使数据丰富,标记的数据也很少见。要解决与此类数据相关的学习问题,人们可以忽略未标记的数据,而只专注于标记的数据(监督学习);使用标记的数据并尝试利用未标记的数据(半监督学习);或假设可以根据要求提供一些标签(主动学习)。第一种方法是最简单的,但是可用的标记数据量将限制预测性能。第二个依赖于查找和利用数据分布的基本特征。第三个取决于外部代理以及时提供所需的标签。本调查特别注意在半监督环境中利用未标记数据的方法。我们还讨论了延迟的标签问题,这会影响完全监督和半监督的方法。我们提出一个统一的问题设置,讨论学习保证和现有方法,解释相关问题设置之间的差异。最后,我们审查当前的基准测试实践,并提出改编以增强它们。
。CC-BY 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 4 月 29 日发布。;https://doi.org/10.1101/2020.04.29.067934 doi:bioRxiv 预印本
然而,EBRT 对治疗转移性或隐匿性场外疾病无效 [3],[4]。在过去的几十年里,放射性配体疗法 (RLT) 已成为抗击癌症的一种有前途的工具 [5]。RLT 与传统 EBRT 有显著不同:放射性标记化合物通过肠外或口服给药,定位到肿瘤组织,在那里以 α、β 或俄歇电子 (AE) 粒子的形式发射电离辐射 [6]。这会导致 DNA 损伤、肿瘤细胞死亡和肿瘤消退。123I 发射短程俄歇电子,将其能量沉积在纳米距离内,从而产生高线性能量转移 (LET) [7]。因此,放射性药物定位到其最有效靶点附近至关重要,即肿瘤细胞核内的 DNA。这也避免了对周围健康细胞的潜在交叉影响 [8]。为了实现将发射俄歇电子的放射性核素选择性地递送至肿瘤以治疗癌症,需要将放射性核素附着到靶向配体上 [9]。由于 PARP-1 的核定位,选择性 PARP 抑制剂似乎是俄歇电子发射放射性核素载体的极佳候选者 [10]。
过去的研究主要使用较低频率(< 30 Hz)的频率标记。但是,使用低频标记存在两个问题。首先,低频标记可以被有意识地感知,从而干扰任务处理。其次,这种低频标记可能会干扰或破坏相同范围内的内源性神经振荡,而内源性神经振荡通常与认知过程有关,包括预测即将到来的感觉输入(Arnal 和 Giraud 2012;Lewis 等人 2016)和自上而下的机制,这些机制塑造了大脑中远处区域或网络之间的通信(Bastos 等人 2015;Fries 2015;Bonnefond 等人 2017)。为了克服这些问题,过去 5 年来,在新开发的具有更高刷新率的投影仪的推动下,研究以更高的频率(> 60 Hz)标记信息。这
摘要背景:已显示单个饮食成分和特定的饮食方案会影响肠道微生物组。目标:在这里,我们通过寻找可以在基于人群的队列中最好与肠道微生物组联系在一起的饮食模式来探讨长期饮食的贡献。方法:使用先验和后验方法,我们从1800名成年人在美国肠道项目中完成的FFQ构建了饮食模式。饮食模式被定义为参与者组的组或食物变量组合(因素),该标准从个人营养到整体饮食。我们将这些模式与16S核糖体RNA的肠道微生物组数据相关联,分别是744名参与者的子集。结果:与单个特征(例如纤维和蛋白质)或代表减少饮食特征减少的因素相比,基于食物组的后验饮食模式与肠道微生物组β多样性最有效(P≤0.0002)。两种模式遵循谨慎的饮食(基于植物和柔韧性的饮食),并表现出健康最高的饮食指数2010(HEI-2010)得分。另外两种模式在HEI-2010分数中呈现出西方样饮食。第五个模式主要由排除饮食(例如低碳水化合物)后的参与者组成。值得注意的是,与柔韧性模式相比,最西方模式的肠道微生物组α多样性明显低于(p≤0.009),并且排除饮食模式与双歧杆菌的相对丰度低有关(p≤1.2×10 –7),这是通过饮食状况更好地解释的。结论:我们证明了全球 - 偏置的后验模式与肠道微生物组的变化相比,比美国成年人的个体饮食特征更多。这些结果证实,在研究肠道微生物组时,总体评估饮食很重要。它也将促进更多
背景:乳腺癌是全球女性死亡的十大原因之一。约 20% 的患者被误诊,导致早期转移、治疗耐药和复发。许多临床和基因表达谱已成功用于将乳腺肿瘤分为 5 种主要类型,这些类型具有不同的预后和对特定治疗的敏感性。不幸的是,这些谱未能将乳腺肿瘤细分为更多亚型,以提高诊断率和存活率。可变剪接正在成为一种新的高度特异性生物标志物来源,用于将肿瘤分为不同等级。利用乳腺癌细胞系 (CCLE) 和乳腺癌肿瘤 (TCGA) 中的大量公共转录组学数据集,我们已经解决了可变剪接变体对高度侵袭性乳腺癌进行细分的能力。