简单而廉价的交互在任何虚拟环境 (VE) 的操作和探索中都起着关键作用。在本文中,我们提出了一种交互技术,该技术以简单且计算成本低廉的方式为复杂对象提供两种不同的交互方式(信息和控制)。交互基于以专门的方式使用多个嵌入式标记。所提出的标记就像一个交互外围设备,其工作原理就像一个触摸支付,可以在 3D VE 中执行任何类型的交互。所提出的标记不仅用于与增强现实 (AR) 交互,还用于与混合现实交互。开发了一个生物虚拟学习应用程序,用于评估和实验。我们分两个阶段进行了实验。首先,我们将一个简单的 VE 与所提出的分层 VE 进行了比较。其次,对所提出的标记、一个简单的分层标记和多个单个标记进行了比较研究。我们发现所提出的标记具有更好的学习效果、交互的简易性以及相对较少的任务执行时间。与简单的 VE 相比,结果显示分层 VE 的学习效果有所改善。
在 AI 监考考试中,学生在考试期间受到监控以确保学术诚信,就像监考人员在校园考试中监控学生一样。网络摄像头记录考试过程,任何诚信问题都会被标记以供审查。在大多数情况下,考试过程中标记的问题与诚信无关,可以避免,例如说话或远离摄像头。上一次考试中,超过 70% 的标记事件与学术不端行为无关,而是 AI 识别出的可轻松预防的行为。为了避免考试中不必要的标记,以下是本次考试中 AI 监考考试中应避免的首要事项。
1. 限制性片段长度多态性 (RFLP) 2. 扩增片段长度多态性 (AFLP) 3. 随机扩增多态性 DNA (RAPD) 4. 切割扩增多态性序列 (CAPS) 5. 简单序列重复 (SSR) 长度多态性 6. 单链构象多态性 (SSCP) 7. 异源双链分析 (HA) 8. 单核苷酸多态性 (SNP) 9. 表达序列标签 (EST) 10. 序列标记位点 (STS)
我们报告了未标记样品的深波长远端光学显微镜的实验证明。,我们通过记录从物体散射到远端的相干光的强度模式来击败常规光学显微镜的K /2衍射极限。我们通过深入学习的神经网络检索有关对象的信息,该神经网络对大量已知对象进行了散射事件的训练。显微镜通过概率地检索成像对象的尺寸。二聚体的亚波长度的宽度以K /10的精度测量,概率高于95%,精度为K /20,概率高于77%。我们认为,所报道的显微镜可以扩展到随机形状的对象,并且对已知形状的对象尤为有效,例如在机器视觉,智能制造和生命科学应用程序的粒子计数的常规任务中发现。
摘要。表面注册在形状分析和几何处理中起着基本作用。通常,评估表面映射结果有三个标准:不同的仿形,小失真和特征对齐。为满足这些要求,这项工作提出了一个新颖的模型,该模型是地标的限制了二态性的。基于Teichm uller理论,该映射空间由Bel-Trami系数生成,它们在有限的teichm- uller中等同于0。这些Beltrami系数是线性方程组的解决方案。通过使用此理论模型,可以通过在不同的态度空间中使用线性约束来实现最佳注册,例如谐波图和Teichm uller图,从而最大程度地减少了不同类型的失真类型。理论模型是严格的,具有实用价值。我们的实验结果证明了该方法的效率和效率。
摘要:A ffi 体分子是放射性核素分子成像中研究最多的一类工程化骨骼蛋白 (ESP)。使用放射性金属直接标记的 A ffi 体分子进行靶向放射性核素治疗的尝试因肾脏中放射性的高吸收和滞留而受到阻碍。已经实施了几种有希望的策略来规避这个问题。在这里,我们研究了是否可以使用针对重吸收系统不同成分的药理学方法来降低肾脏对 [ 99m Tc]Tc-Z HER:2395 A ffi 体分子的吸收。与对照组相比,预先注射丙磺舒、呋塞米、甘露醇或秋水仙碱对肾脏的放射性吸收没有影响。与对照组相比,预先注射马来酸和果糖的小鼠肾脏相关活性分别降低了 33% 和 51%。放射自显影图像显示,注射 [ 99m Tc]Tc-Z HER2:2395 后活性的积累在肾皮质中,马来酸和果糖均可显著降低活性。本研究结果表明,使用马来酸和果糖进行药物干预可有效减少肾脏对 a 体分子的吸收。一种可能的机制是肾小管细胞破坏了 ATP 介导的细胞吸收和 a 体分子的内吞过程。
摘要:随着近年来人们对使用溶菌噬菌体作为治疗剂的兴趣日益浓厚,迫切需要了解它们的基本生物学,以便对其基因组进行工程改造。目前的噬菌体工程方法依赖于同源重组,然后通过选择系统来识别重组噬菌体。对于 T7 噬菌体,宿主基因 cmk 或 trxA 已被用作选择机制,以及 I 型和 II 型 CRISPR 系统,以对抗野生型噬菌体并富集所需的突变体。在这里,我们系统地比较了这三个系统;我们表明使用基于标记的选择是最有效的方法,我们使用这种方法来生成多个 T7 尾纤维突变体。此外,我们发现在噬菌体 T7 的工程改造中,II 型 CRISPR-Cas 系统比 I 型系统更易于使用,并且通常更有效。这些结果为未来更有效地改造噬菌体 T7 奠定了基础。
使用高级爆炸模拟器,与“自由场”爆炸的紧密模拟,将大鼠暴露于四次至13、16或19 psi过压(n = 6/组)。TDP-43水平受到爆炸暴露的数量和大小的影响,与假手术相比,大鼠暴露于16 psi的多个爆炸的平均水平高38%,而暴露于两种爆炸的大鼠中,平均水平则高约32%。piezo2水平明显更高(约17%),而暴露于13和16 psi爆炸的大鼠的水平显着降低(〜52%),这表明与较低的机械刺激爆炸相比,高强度爆炸可能对大脑对机械刺激的反应具有不同的影响。这些发现表明,反复暴露对爆炸的累积影响可能会导致大脑的病理生理变化,这表明爆炸损伤与神经退行性疾病之间可能存在联系。
n“主要目标”;或者是主要的(如果不是唯一的)驱动程序和大多数驱动程序(即。超过一半)的组件(按照特定目标和/或预期结果定义/组织),预计至少占预算的三分之二,为其做出了重大贡献。OECD指南指出,“实施国家行动计划或实施任何一项里约公约的行动计划或战略的实施(例如,CDB下的国家生物多样性战略和行动计划; UNFCCC下的Napas,Naps,Namas或Indcs; UNCCD下的国家行动计划自动符合“主要目标”,因为惯例为活动设计提供了动力。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。