其中 S(f)=−Rdxf(x)lnf(x) 是微分熵。如今,许多熵不确定性关系已得到证明和研究,例如用 Shannon 熵表示的具有离散谱可观测量的 Maassen-Uffink 熵不确定性关系[11-14],用互信息表示的信息排斥原理[15-17],Rényi 熵[13,18],Wehrl 熵[19,20],在存在(量子)记忆的情况下用条件熵表示的不确定性[14,21-24],以量化能量和时间之间的不确定性[25],或在更一般的互补算子代数设置中[26-28]。此外,离散变量和连续变量两种不同情况已在 [29, 30] 中统一。在本文中,我们将熵不确定性的概念扩展到标量量子场论,我们的动机有三方面。首先,信息论的观点已导致对量子场论的许多见解,最突出的是在纠缠[31-33]、热化[34-36]和黑洞物理[37-39]的背景下。由于不确定性原理是每个自然界量子理论的核心,因此严格的量子场的熵公式对于更深入地理解量子场论至关重要。其次,不确定性关系对于见证纠缠起着重要作用,特别是对于连续变量量子系统。除了 Simon [40] 和 Duan 等人提出的著名的二阶不可分离性标准之外。 [41] ,存在基于熵不确定关系的更强的熵标准 [42–44] 。此外,熵不确定关系可用于制定转向不等式 [45,46] ,或者通过包括(量子)记忆 [24] ,可以推导出纠缠度量的界限 [47] 。有关熵标准的实验应用,请参见 [45,47] 。
摘要:纳米载体分子的靶向药物递送可以增加癌症治疗的效率。靶向配体之一是叶酸(FA),该叶酸对叶酸受体具有很高的属性,在许多癌症中都过表达。在此,我们描述了含有量子点(QD)和β-环性克推丁蛋白(β -cd)的纳米缀合物的制备,并具有叶状靶向特性,用于赋予抗癌化合物C -2028。C -2028通过β-CD的包含复合物与纳米偶联物结合。在癌症(H460,DU-145和LNCAP)和正常(MRC-5和PNT1A)细胞中,使用FA在QDS-β-CD(C-2028)-FA纳米缀合物中对细胞毒性,细胞摄取以及内在化机制的影响。使用DLS(动态光散射),ZP(ZETA电位),具有耗散(QCM-D)和UV-VIS光谱的QDS-β-CD(C-2028)-FA进行表征。C-2028与无毒QD或QDS-β-CD-FA的结合没有改变该化合物的细胞毒性。共聚焦显微镜研究证明,在纳米偶联物中使用FA显着增加了递送化合物的量,尤其是癌细胞。QD绿色-β-CD(C -2028)-FA通过不同水平的多个内吞作用途径进入细胞,具体取决于细胞系。得出结论,FA的使用是QDS平台中良好的自动分子,将药物输送到癌细胞中。
©2021量子公司。保留所有权利。您复制本手册的权利受版权法的限制。法律禁止未经量子公司的书面授权进行副本或改编,并构成了对法律的惩罚。ActivesCale,DXI,DXI Accent,Flexsync,Flextier,Ilayer,Lattus,Quantum,Quantum徽标,QXS,QXS,Scalar,Stornext,Superloader,Vision和Xcellis是量子公司和其在美国和/或其他国家/地区的商标或其邮政局的注册商标或商标。所有其他商标都是其各自所有者的财产。量子规格可能会发生变化。
简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3比例安全框架。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3访问控制。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4监视和事件检测。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4个数据安全性和加密。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5数据完整性和网络保护。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5技术细节。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5监视和事件检测。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个数据安全和加密。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12数据集成和网络保护。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13标量安全框架功能摘要。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。15
在这里,我们证明了半线性波方程解的全球存在定理,具有批判性的非线性,承认有肯定的哈密顿量。在全球双曲线弯曲的时空中为波方程制定了一个参数,我们将Apriori在非线性波方程的溶液中以最初的能量为单位,从而以直接的方式遵循全局存在。这是通过两个步骤完成的。首先,基于Moncrief的光锥制剂,我们根据过去的光锥从任意时空点到“初始”,Cauchy hypersurface和该锥体与初始hypersurface的相交的“初始cauchy hypersurface”,从过去的光锥上呈现标量的表达。其次,我们获得了与三个准局部相关时间样的保形杀害和一个近似杀伤载体场相关的能量的先验估计。利用这些与物理应力 - 能量张量和积分方程相关的自然定义的能量,我们表明,标量场的时空L∞规范在初始数据方面保持界定,并且只要空间时空保持奇异/cauchy-horizon notimulition/cauchy-horizon nove the the n of tim to n of。
©2021量子公司。保留所有权利。您复制本手册的权利受版权法的限制。法律禁止未经量子公司的书面授权进行副本或改编,并构成了对法律的惩罚。ActivesCale,DXI,DXI Accent,Flexsync,Flextier,Ilayer,Lattus,Quantum,Quantum徽标,QXS,QXS,Scalar,Stornext,Superloader,Vision和Xcellis是量子公司和其在美国和/或其他国家/地区的商标或其邮政局的注册商标或商标。所有其他商标都是其各自所有者的财产。量子规格可能会发生变化。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
已经投入了很大的努力来研究量子化学方面的概率[1-4],冷凝物理学[5-7],宇宙学[8-10],以及高能和核物理学[11-16],具有数字量子计算机和模拟量子模拟器[17-22]。一个主要的动机是加深我们对密切相关的多体系统(例如结合状态频谱)的基础特性传统特征的传统特征的理解。另一个是在散射问题中推进最新技术的状态,该问题提供了有关此类复杂系统的动态信息。在这项工作中,我们的重点将放在相对论量子领域理论中用于高能散射和多颗粒产生的量子算法的问题。我们的工作是在量子铬动力学(QCD)中提取有关Hadron和Nuclei的性能的动态信息的有前途但遥远的目标。Examples of scattering problems in QCD where quantum information science can accelerate our present computational capabilities are low-energy scattering in nuclear many-body systems [ 23 , 24 ], the thermalization process in ultrarelativistic ion-ion collisions [ 25 ], studies of the structure of nuclear matter probed in deeply inelastic scattering (DIS) of elec- trons off protons and nuclei [ 26 – 33 ], and the fragmentation of
-- **************************************************** -- QUANTUM-MIDRANGE-TAPE-LIBRARY-MIB: Scalar i3-i6 Tape Library Specific MIB -- -- $Date: 2016-09-15 00:00:00 (Thu, 15 September 2016) $ -- -- Copyright (c) 2016 by Quantum Corporation -- All rights reserved.-- -- **************************************************** -- Glossary of terms -- -- FC : Fiber Channel -- MIB : Management Information Base -- RAS : Reliability, Accessibility and Serviceability -- SAS : Serial Attached SCSI -- SCSI: Small Computer System Interface -- WWNN: World Wide Node name -- WWPN: World Wide Port name --量子中间 - 中间型 - 绑定图形 - 单位定义:: =开始导入通知类型,模块 - 身份,企业,Integer32,snmpv2-smi textual-textual-convention的对象型,从snmpv2-tc Notification-contrup,snmpv2-tc-proups,module-objectiance,snmpv2-conf中显示出snmpv2-tc Notification-tympe。 - - 中范围的磁带库OID定义 - MrtapeLibraryMib模块-Identity
本参考指南介绍了简单网络管理协议(SNMP)的基本用法,以从Scalar®I2000 / i6000库中获取警报信息。重点放在通过陷阱和管理信息库(MIB)查询可用的最关键信息上。有关标量i2000 / i6000库本身的信息,请参阅标量i6000用户指南。有关将MIB集成到SNMP管理应用程序中的信息,请联系您的软件供应商。