平均值定理的重要性及其应用,评估多个积分,具有物理理解的矢量演算语言,可以处理诸如流体动力学和电磁场等受试者,序列和系列和系列的融合以及傅立叶系列。模块1差分微积分12小时的限制,连续性和不同性;平均值定理,泰勒和麦克劳林的定理,部分分化,总分分化,欧拉的定理和概括,最大值和最小值的几个变量功能,Lagrange的乘数方法;变量的变化 - 雅各布人。模块2积分10小时的微积分基本定理,不当积分,面积的应用,体积。双重和三个积分模块3矢量计算14标量和向量场;向量分化;定向衍生物 - 标量场的梯度;向量场的发散和卷曲 - 拉普拉斯 - 线和表面积分;格林在飞机上的定理;高斯分歧定理;斯托克斯定理。模块4序列和串联10小时
华盛顿大学核理论研究所,西雅图,华盛顿州 98195-1550,美国(日期:2021 年 2 月 1 日 - 9:54)摘要无质量无相互作用标量场理论的两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
摘要我们采用了一种幽灵模型,用于相互作用的暗能量,以在复杂的典型范围内获得FRW宇宙中幽灵能量密度的状态ω方程。我们重建了描述复杂精神学的标量场的潜力和研究。我们对非相互作用和相互作用的情况进行ω-ω'分析和稳定性分析,并发现与真实模型相同的基本结论,其中ω'=dΩ/ dlna。考虑到复杂部分的效果,并假设典型界面的实际部分是一个缓慢滚动的领域,我们得出的结论是,非交互模型无法描述真实的宇宙,因为这将导致分数能量d> 1,其中d可以将d定义为ρdd与ρd的比例。但是,对于相互作用的情况,如果我们采用当前d = 0。73,然后我们可以确定B 2 = 0。0849,其中b 2是物质与黑能之间的相互作用耦合。在实际的典型模型中,d和b 2是独立参数,而在复杂的典型模型中,我们得出结论,这两个参数之间存在关系。
华盛顿大学核理论研究所,华盛顿州西雅图 98195-1550,美国(日期:2021 年 2 月 10 日 - 21:58)摘要无质量无相互作用标量场理论中两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
在这里,我们证明了半线性波方程解的全球存在定理,具有批判性的非线性,承认有肯定的哈密顿量。在全球双曲线弯曲的时空中为波方程制定了一个参数,我们将Apriori在非线性波方程的溶液中以最初的能量为单位,从而以直接的方式遵循全局存在。这是通过两个步骤完成的。首先,基于Moncrief的光锥制剂,我们根据过去的光锥从任意时空点到“初始”,Cauchy hypersurface和该锥体与初始hypersurface的相交的“初始cauchy hypersurface”,从过去的光锥上呈现标量的表达。其次,我们获得了与三个准局部相关时间样的保形杀害和一个近似杀伤载体场相关的能量的先验估计。利用这些与物理应力 - 能量张量和积分方程相关的自然定义的能量,我们表明,标量场的时空L∞规范在初始数据方面保持界定,并且只要空间时空保持奇异/cauchy-horizon notimulition/cauchy-horizon nove the the n of tim to n of。
摘要。算术哈希函数已在素数上定义的函数已被积极开发和用于可验证的计算(VC)协议。在其中,基于椭圆曲线的蛇需要大的(256位及更高)的素数。与SHA-2/3(如SHA-2/3)相比,这种哈希功能的速度明显缓慢,最大损失了1000倍。在本文中,我们介绍了哈希函数摩天大楼,该摩天大楼针对大型素数,并且与钢筋混凝土和整体相比提供了重大改进。首先,对于所有大型素数,设计完全相同,这简化了分析和部署。其次,它通过使用低度不可变形转换并最大程度地减少模量降低,实现了与加密哈希标准相当的性能。具体而言,它在135纳秒中放映了两个256位序场(BLS12-381曲线标量场)元素,而SHA-256在同一台机器上需要42纳秒。摩天大楼的低回路复杂性以及其高天然速度应在许多VC场景中大大降低,尤其是在递归证明中。关键字:哈希函数·零知识·电路
考虑到双重全息模型,我们研究了永恒ADS D -RN黑洞的黑洞信息悖论,并与平衡耦合,并与D维二维形成型浴缸偶联,其状态已被带电标量耦合到U(1)球场的带电标量造成的状态变形。没有勃雷,边界系统上量规场的自发对称断裂可以在临界温度(称为全息超导体)处诱导带电标量场的二阶相变。浴室变形可以用黑洞显着改变其纠缠动态,从而导致页面曲线和页面时间的变化。我们的结果表明,可以将页面曲线的特征参数(例如纠缠速度,初始面积差异和页面时间)用作合适的探针,以检测超导相变。特别是,纠缠速度还可以探测卡斯纳流动和约瑟夫森振荡。将辐射区域的终点固定在临界页点的两倍时,纠缠速度(内部反应)比初始面积差异(外部反射)对页面时间的影响更大。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
平均值定理的重要性及其应用,评估多个积分,具有物理理解的矢量演算语言,可以处理诸如流体动力学和电磁场等受试者,序列和系列和系列的融合以及傅立叶系列。模块1差分微积分12小时的限制,连续性和不同性;平均值定理,泰勒和麦克劳林的定理,部分分化,总分分化,欧拉的定理和概括,最大值和最小值的几个变量功能,Lagrange的乘数方法;变量的变化 - 雅各布人。模块2积分10小时的微积分基本定理,不当积分,面积的应用,体积。双重和三个积分模块3矢量计算14标量和向量场;向量分化;定向衍生物 - 标量场的梯度;向量场的发散和卷曲 - 拉普拉斯 - 线和表面积分;格林在飞机上的定理;高斯分歧定理;斯托克斯定理。模块4序列和串联10小时序列和串联功能系列的收敛。模块5傅立叶系列和傅立叶变换10小时傅立叶系列:周期功能,欧拉的公式,dirichlet的条件,均匀和奇数功能,半范围序列,parseval的身份。傅立叶变换
在本研究中,我们首先收集并概括了几个现有的非微扰模型,用于描述任意弯曲时空中单个两级量子比特探测器与相对论量子标量场之间的相互作用,其中时间演化由简单生成的幺正体给出,即由施密特秩 1 相互作用哈密顿量生成的幺正体。然后,我们扩展了与这些非微扰模型相关的相对论量子通道,以包括量子场的非常大的一类高斯态,其中包括场上的相干和压缩操作(即高斯操作)的任意组合。我们表明,所有涉及非真空高斯态的物理结果都可以用与真空态相互作用的形式重新表述,但高斯算子通过伴随通道应用于场算子,从而有效地给出了时空中因果传播子形式的高斯运算的“傅里叶变换”解释。此外,我们表明,在这些非微扰模型中,可以精确计算 Rényi 熵,因此,通过复制技巧,可以计算与探测器相互作用后场态的冯·诺依曼熵,而无需对探测器和场的联合初始状态的纯度做出任何假设。这为我们提供了场的三参数“广义猫态”系列,其熵是有限的,并且精确可计算。