摘 要: 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于 Informer 架构和长短时记忆网络( long short-term memory, LSTM )与多源数据融合的冠层区域温度预测模型。在编码层 中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用 LSTM 提取 短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络( improved residual feedforward network, IRFFN )以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关 系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对 超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他 4 种主流算法进行对比分析,提出的 Informer- LSTM 在冠层区域温度预测方面表现出更高的精度,其平均绝对误差( mean absolute error, MAE )、均方根误差( root mean square error, RMSE )和决定系数( R 2 )分别达到了 0.166 、 0.224 ℃和 97.8% ,与基础模型 Informer 相比,冠层区 域温度的预测精度提高了 32.36% 。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提 供了一种新的技术方法。 关键词: 冠层 ; 温度 ; 非线性时间序列 ; 长短期记忆神经网络 ; Informer doi : 10.11975/j.issn.1002-6819.202409001 中图分类号: TP18 ; S165 文献标志码: A 文章编号: 1002-6819(2025)-07-0001-11
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要。北方和亚高山森林每年多个月的季节性降雪;但是,由于温度和森林干扰,这些环境中的降雪状况正在迅速变化。准确预测森林雪动力学,与生态水文,生物地球化学,冰冻圈和气候科学有关,需要基于过程的模型。虽然已经提出了跟踪单个雪层微观结构的雪态研究,但到目前为止,只有在几个雪透水模型中才存在解决树冠代表的树规范过程。迄今为止,缺乏在仪表尺度上实现图层和微观结构的森林降雪模拟的框架。为了填补这一研究差距,这项研究介绍了森林雪建模框架FSMCRO,该框架结合了两种脱落的,最先进的模型组件:来自柔性雪模型(FSM2)的冠层代表和crocus snowpack代表crocus snepack sysemble model sys-sys-tem(coccroc)。我们将FSMCRO应用于北方和亚高山位点的不连续森林,以展示树规范的雪过程如何影响层尺度的雪堆特性。在对比位置的模拟显示整个冬季地层上有明显的不同。这些原因是由于镜片不足与间隙位置的不同流行过程以及由于空间可变的雪堆能量平衡而导致的雪变质性变异性。eN-Semble模拟使我们能够评估模拟地层学的鲁棒性和不确定性。在空间上明确的模拟揭示了
摘要 — 新兴的实例优化系统类别已显示出通过专门针对特定数据和查询工作负载实现高性能的潜力。特别是,机器学习 (ML) 技术已成功应用于构建各种实例优化组件(例如,学习索引)。本文研究了利用 ML 技术来增强空间索引(特别是 R 树)的性能,以适应给定的数据和查询工作负载。由于 R 树索引节点覆盖的区域在空间中重叠,因此在搜索空间中的特定点时,可能会探索从根到叶的多条路径。在最坏的情况下,可以搜索整个 R 树。在本文中,我们定义并使用重叠率来量化范围查询所需的无关叶节点访问程度。目标是提高传统 R 树对高重叠范围查询的查询性能,因为它们往往会产生较长的运行时间。我们引入了一种新的 AI 树,将 R 树的搜索操作转换为多标签分类任务,以排除无关的叶节点访问。然后,我们将传统的 R 树扩展到 AI 树,形成混合的“AI+R”树。“AI+R”树可以使用学习模型自动区分高重叠查询和低重叠查询。因此,“AI+R”树使用 AI 树处理高重叠查询,使用 R 树处理低重叠查询。在真实数据集上的实验表明,“AI+R”树可以将查询性能提高到传统 R 树的 500% 以上。
在单户住宅区的前院,本机和标本树位于前财产线和主要结构之间的区域。(这不包括诸如烟囱,格子,门廊,露台和海湾等预测。)在单户住宅区的角院,位于侧属性线和主要结构之间的区域的本地和标本树。
摘要生命之树(https://itol.embl.de)是用于管理,显示,注释和操纵系统发育和其他树木的在线工具。它是可以自由的,可以向E viry开放。Itol v ersion 6引入了现代化且完全重写的用户界面以及许多新功能。已经引入了一种新的数据集类型(彩色 /标记的范围),大大升级了先前的简单彩色范围注释函数的功能。对几个现有数据集T ypes实现了其他注释选项。DAT ASET模板文件现在通过子字符串匹配(包括完整的正则表达支持)来支持对多个树节点的简单分配。节点MET ADAT ADAT已大大扩展了处理,没有V el distai y和e Xporting选项,并且不能进行交互性编辑或通过注释文件进行更新。可以使用多个同时的字体样式显示树标签,并具有精确的定位,大小和单个标签零件的大小。实施了各种散装标签编辑功能,简化了所有树节点标签的大规模更改。ITOL的自动税收分配功能现在还基于基因组税元数据库(GTDB)支持树,此外NCBI税收税也是如此。可选的用户帐户页面的功能已扩展,简化了项目和树木的管理,导航和共享。ITOL目前从> 130 0 0 0单个用户帐户中处理超过一百万棵树。
6ROADS Adaptronica 空中客车波兰 Antmicro Astri Polska Astronika Blue Dot Solutions 天文中心。 MK PAN 空间研究中心 PAN Cervi Robotics CloudFerro Creotech Instruments Eversis 技术合作伙伴基金会技术合作伙伴 Geosystems GMV Innovating Solutions WB Group Hertz Systems Ltd ICEYE Polska InPhoTech 国家电信研究所 波兰科学院基础技术问题研究所 ITTI Jakusz Space Tech Kapitech Komes KP Labs Microamp Solutions N7 Space Nobo Solutions Opegieka PCO PIAP Space
4在图中的树中分类27 4.1图形定理的较弱版本。。。。。。。。。。。。。。。27 4.2网格和棕褐色。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 4.3不包括平面图。。。。。。。。。。。。。。。。。。。。。。。。。。。30 4.3.1分离和k -meshes。。。。。。。。。。。。。。。。。。。。。。31 4.3.2找到R -Grid未成年人。。。。。。。。。。。。。。。。。。。。。。。32 4.4有界树宽度的良好排序图。。。。。。。。。。。。。36 4.4.1对称的下函数和分支宽度。。。。。。。。37 4.4.2有界分支宽度的良好排序图。。。。。。。40 4.4.3将平面图排除为未成年人的含义。。。。。。。。42 4.5 kuratowski定理的概括。。。。。。。。。。。。。。。。。。43