分子使其能够应用于疾病,特别是肿瘤的治疗和诊断。9 AS1411 是一种富含 26 核苷酸鸟苷的 DNA 适体,可以与肿瘤细胞上的核仁蛋白结合。10 – 12 它可用于靶向药物输送和成像。Dai 等人通过 AS1411 适体共轭介孔聚多巴胺构建多功能纳米粒子,用于前列腺癌的靶向和协同化疗/光热治疗。13 Chen 等人报道了一种适体-树枝状大分子功能化的磁性纳米八面体,用于 AS1411 适体靶向、NIR/MR 双模态成像引导和 HSP70/HSP90 沉默敏化磁化学疗法。14 为了实现按需释放,一系列与肿瘤相关的刺激物已被用来设计刺激触发的药物输送系统。一系列内触发刺激,如 pH、15 缺氧、16
在宇宙中使用纳米颗粒已成为一种变革性的方法,可增强活性成分在护肤配方中的功效和生物利用度。这篇评论论文综合了应用于化妆品行业的纳米技术的最新进展,突出了各种类型的纳米颗粒,包括脂质体,固体脂质纳米颗粒和树枝状聚合物。我们讨论了它们在改善渗透,稳定性和有效化合物的受控释放方面的作用,以及靶向递送和减少副作用的潜力。此外,还检查了使用纳米颗粒的安全性,监管问题和消费者的看法。主要的研究和发现来自一系列来源,包括美容皮肤病学杂志,国际美容科学杂志和纳米医学等经过同行评审期刊:纳米技术,生物学和医学。本文最后讨论了将纳米技术融入宇宙产品中的未来趋势和挑战,并提倡正在进行的研究以充分利用其潜力,同时确保安全性和有效性。
在过去的二十年中,锂离子电池已发展成为最主要的电化学储能系统,锂离子电池材料和系统工程也取得了重大进展 [1-3]。传统锂离子电池 (LIB) 的一个重大限制是出于安全考虑无法使用元素锂作为阳极材料。在反复充电的过程中,锂不会均匀沉积;相反,它倾向于形成树枝状结构。这些枝晶会向阴极延伸,导致短路并可能导致电池爆炸 [4]。近年来,镁离子电池(后锂电池)备受关注,被认为是锂基技术的有前途的替代品,尤其是在电动汽车应用领域 [5-6]。与受地质储量有限的锂不同,镁在地壳中的含量要丰富得多,约占 1.5 wt%。镁离子电池比锂离子电池具有多项优势,例如,其理论体积能量密度高达 3833 mAh/mL,而锂金属阳极的理论体积能量密度仅为 2046 mAh/mL。此外,镁离子系统具有较高的重量容量,为 2205 mAh/g,并且
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
有机激光已经经历了数十年的发展。已经证明了具有出色的光学增益特性的无数材料,包括小分子,树枝状聚合物和聚合物。也已应用各种谐振器几何形状。在共享有机材料的解决方案加工性和机械功能特征的优势时,有机光增益介质还提供了有趣的光学特性,例如通过化学功能化和固有的大型光学增益系数来可调性。他们为在生物成像,医学,化学和生物传感,抗抗议应用或展示领域的不同应用提供了前景。然而,由于有机半导体的固有缺点,例如,适度的载流子迁移率,长期寿命的激发状态吸收以及源于设备中的额外损失(例如,金属电极吸收,金属电极吸收),导致电泵送有机激光器的实现仍然是一个挑战。在此,讨论了有机激光器的过去发展,强调了材料和空腔在电泵送有机激光器的目标方面的重要性。讨论了最新的进展和解决挑战的可能方法。
摘要 癌症是目前造成人类死亡的最难治愈的疾病之一。尽管通过各种现代治疗方法,肿瘤患者的预后得到了一定程度的改善,但肿瘤细胞的多药耐药性(MDR)仍然是导致临床治疗失败的主要问题。化疗耐药性是指肿瘤细胞和/或组织对药物的耐药性,通常是固有的或在治疗过程中产生的。因此,迫切需要研究理想的药物输送系统来克服传统化疗的缺点。纳米技术的快速发展为我们解决这一问题带来了新的启示。新型纳米载体提供了一种相当有效的治疗方法,可以克服化疗或其他药物因耐药性、高毒性、缺乏靶向性和脱靶等全身副作用而导致的局限性。在此,我们介绍了几种肿瘤 MDR 机制,并讨论了用于克服癌症耐药性的新型纳米颗粒技术。纳米材料包括脂质体、聚合物缀合物、胶束、树枝状聚合物、碳基、金属纳米颗粒和核苷酸,可用于递送化疗药物
摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
纳米系统以不可预测的方式发挥作用。例如,据观察,只有 0.7% 的纳米系统剂量到达目标组织,因为生物纳米相互作用可能会扰乱其主要功能并影响细胞识别和摄取。6 随着纳米材料在生物医学中的应用日益广泛,考虑到人类接触纳米疗法和治疗的增加,这方面正成为优先事项。特别是在癌症治疗领域,随着市场上可用产品数量的增加,基于纳米颗粒的抗癌疗法的商业化正在大幅增加。 7 这些包括聚合物载体 8,9 (例如,水凝胶、聚合物囊泡、树枝状聚合物和纳米纤维),脂质载体 10 - 12 (例如,脂质体、固体脂质纳米颗粒和胶束),金属纳米颗粒 13 (例如,金、银和钛),碳结构(例如,纳米管、纳米角、纳米金刚石)和石墨烯。14,15 然而,只有不到 10% 的此类纳米治疗剂能够转化为临床应用,其余大部分是有希望的但临床上无效的实验性疗法。16 这使得转化研究成为一项长期而昂贵的事业,
本研究调查了通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 制造的 Haynes 230 的微观结构和室温力学性能。L-PBF 和 LP-DED 样品均经过类似的多步热处理 (HT):应力消除 (1066°C,持续 1.5 小时),然后进行热等静压 (1163°C 和 103 MPa,持续 3 小时) 和固溶退火 (1177°C,持续 3 小时)。采用扫描电子显微镜进行微观结构分析。进行室温单轴拉伸试验以评估力学性能。L-PBF 和 LP-DED 样品在 HT 后的微观结构变化和拉伸结果具有可比性。在高温下,非热处理条件下观察到的微观偏析和树枝状微观结构几乎完全溶解,并且在 L-PBF 和 LP-DED 样品中的晶粒内部和晶粒边界内形成了碳化物相 (M 6 C/M 23 C 6 )。最后,研究了拉伸载荷下的失效机制,并通过断口分析进行了比较。关键词:增材制造、Haynes 230、激光粉末床熔合、激光粉末定向能量沉积、拉伸性能。