抽象问题陈述:自然界中的自组织颗粒长期以来启发了结构形式。这些形式以有效地使用最小材料,并轻巧。物理模型已用于探索这些自组织粒子,并作为设计和计算的基础。然而,制作,测量和缩放这些模型是乏味的,尤其是对于复杂的几何形状,例如树状结构。如今,计算机模拟可以应用自然逻辑来创建数字模型。这些模型模拟形式调查和缩放速度更快,更容易。研究目标:这项研究的目的是提出一种数字工具,该工具源自算法设计,用于基于湿线模型的物理测试的分支结构的数字形式查找。研究方法:这项研究首先是通过研究该领域的可用资源和科学文章的研究,然后使用计算方法来设计数字工具。结论:基于湿线模型的算法设计简化了树状结构的最佳设计。它优化了设计结果和设计过程。物理形式调查通常会在将模型转换为建筑计划时面临困难。通过数字化此过程,最终形式的测量变得更快,更容易。这增强了这些形式的构造性。关键字:自组织模式,数字形式找到,算法设计,类似树状的结构。
摘要:准确评估岩石强度是几乎所有岩石项目(如隧道和开挖)的一项基本任务。人们尝试了许多方法来创建计算无限制抗压强度 (UCS) 的间接技术。这通常是由于收集和完成上述实验室测试的复杂性。本研究应用了两种先进的机器学习技术,包括极端梯度提升树和随机森林,用于根据无损检测和岩相学研究预测 UCS。在应用这些模型之前,使用 Pearson 卡方检验进行了特征选择。该技术选择了以下输入来开发梯度提升树 (XGBT) 和随机森林 (RF) 模型:干密度和超声波速度作为无损检测,云母、石英和斜长石作为岩相学结果。除了 XGBT 和 RF 模型外,还开发了一些经验方程和两个单决策树 (DT) 来预测 UCS 值。本研究的结果表明,在系统精度和误差方面,XGBT 模型在 UCS 预测方面优于 RF。XGBT 的线性相关性为 0.994,其平均绝对误差为 0.113。此外,XGBT 模型优于单个 DT 和经验方程。XGBT 和 RF 模型也优于 KNN(R = 0.708)、ANN(R = 0.625)和 SVM(R = 0.816)模型。本研究的结果表明,XGBT 和 RF 可有效用于预测 UCS 值。
NAVID Rabiee化学系,Sharif技术大学,德黑兰,伊朗Shokooh Ahmadvand生物医学工程学院和分子生物学研究中心,伊朗德黑兰Shahid Beheshti医学科学大学医学科学大学,伊朗纳米技术系,伊朗纳米技术研究中心,伊朗纳米技术研究中心,伊朗纳米技术研究中心,医学科学教育师,蒂赫兰大学,艾里师大学,伊里兰斯大学,伊里兰斯大学,伊朗大学,伊朗大学,伊朗大学,艾里河科学研究中心。 (USERN),德黑兰,伊朗Rassoul Dinarvand纳米技术系,德黑兰医学科学大学药学院,伊朗,德黑兰
将活性细胞机制与合成构件整合在一起,是开发具有生物功能及其他功能的合成细胞的桥梁。自我复制是生命系统最重要的任务之一,有各种复杂的机制来执行这一任务。在大肠杆菌中,收缩分裂环通过自组织蛋白 (MinCDE) 的浓度振荡定位到细胞中部,在那里它切断膜和细胞壁。到目前为止,任何细胞分裂机制的重建都与脂质体有关。这里展示了在完全合成的双组分树枝状聚合物中重建基本的细菌分裂体。通过调整膜组成,可以定制生物机制与合成膜的相互作用以重现其动态行为。这构成了合成细胞与生物元素组装的重要突破,因为调整膜-分裂体相互作用是自下而上设计新兴生物行为的关键。
1图理论预序1 1.1树分解和树宽。。。。。。。。。。。。。。。。。。。。。。1 1.1.1定义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.1.2子图和未成年人。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.3连接性和分离属性。。。。。。。。。。。。。。。。5 1.2最多k的树宽图。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 1.1.2k cloque和。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 1.2.2.2 chrortal图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 1.6.2.3部分K -Trees。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 12 1.2,4淘汰订单。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>9 1.6.2.3部分K -Trees。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 1.2,4淘汰订单。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 1.2.5荆棘。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 1.3图形理论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 div>