抽象的癌症免疫疗法,特别是检查点阻断免疫疗法(CBT),可以诱导癌症生长的控制,而患者的一部分患者的反应持久反应。但是,当前大多数患者对CBT没有反应,并且耐药性的分子决定因素尚未完全阐明。安装临床证据表明,新抗原(NeoAg)的克隆状态会影响抗肿瘤T细胞反应。大多数NEOAGS均以次颅的表达表达的高肿瘤内杂物(ITH)与对CBT的临床反应不佳,并且与肿瘤反应性T细胞的浸润不良有关。然而,ITH钝性肿瘤反应性T细胞的机制尚不清楚。我们开发了一种可移植的鼠肺癌模型,以表征分别针对表达的定义的NEOAG,分别表达的NEOAG,分别以低或高ITH模型。在这里我们表明,具有相对强大的NEOAG的弱免疫原性NEOAG的克隆表达增加了低但不高的肿瘤的免疫原性。从机械上讲,我们确定克隆新核表达允许交叉呈递的树突状细胞获取并呈现两个NEOAGS。树突状细胞的双重NEOAG表现与更成熟的DC表型和更高的刺激能力有关。这些数据表明,克隆NEOAG表达可以由于更具刺激性的树突状细胞:T细胞相互作用而引起更有效的抗肿瘤反应。靶向亚克隆表达的NEOAGS的治疗疫苗可用于增强抗肿瘤T细胞反应。
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 12 月 22 日发布。;https://doi.org/10.1101/2020.12.22.423985 doi:bioRxiv 预印本
1 加州大学旧金山分校细胞与分子药理学系,美国旧金山;2 加州大学旧金山分校霍华德休斯医学研究所,美国旧金山;3 加州大学旧金山分校加州定量生物科学研究所,美国旧金山;4 加州大学旧金山分校微生物学与免疫学系,美国旧金山;5 斯坦福大学生物工程系,美国斯坦福;6 斯坦福大学 ChEM-H,美国斯坦福;7 怀特黑德生物医学研究所,美国剑桥;8 陈扎克伯格生物中心,美国旧金山;9 麻省理工学院生物系,美国剑桥
1 加州大学旧金山分校细胞与分子药理学系,美国旧金山;2 加州大学旧金山分校霍华德休斯医学研究所,美国旧金山;3 加州大学旧金山分校加州定量生物科学研究所,美国旧金山;4 加州大学旧金山分校微生物学与免疫学系,美国旧金山;5 斯坦福大学生物工程系,美国斯坦福;6 斯坦福大学 ChEM-H,美国斯坦福;7 怀特黑德生物医学研究所,美国剑桥;8 陈扎克伯格生物中心,美国旧金山;9 麻省理工学院生物系,美国剑桥
Ning,Z。等。 (2023)锂金属固态电池中的树突启动和繁殖。 自然,618(7964),pp。 287-293。 (doi:10.1038/s41586-023-05970-4)这是作者的作者版本。 此版本和已发布的版本之间可能存在差异。 如果您想引用:https://doi.org/10.10.1038/s41586-023-05970-4 https://eprints.glaints.gla.ac.ac.ac.uk/300244/Ning,Z。等。(2023)锂金属固态电池中的树突启动和繁殖。自然,618(7964),pp。287-293。(doi:10.1038/s41586-023-05970-4)这是作者的作者版本。此版本和已发布的版本之间可能存在差异。如果您想引用:https://doi.org/10.10.1038/s41586-023-05970-4 https://eprints.glaints.gla.ac.ac.ac.uk/300244/
树突状细胞(DC)是启动和维持免疫反应的关键细胞。他们在体内平衡,炎症和自身免疫性中起着至关重要的作用。许多分子调节其功能,包括突触形成,迁移,免疫力和耐受性诱导。许多IEI的特征是在编码这些分子中的几个基因中突变,导致IEI的免疫效率,炎症和自身免疫性。目前,有465个天生的免疫力(IEI)已分为10个不同类别。但是,仅在少数IEI中报告了DC的全面研究。在这里,我们根据最近出版的IUIS分类审查了IEI分类中DC的生物学。我们已经审查了每个组类别中选定的IEI中的DC,并在DC中进行了深入的变化,其中可用的数据可用于DC在临床和免疫学表现中的作用。这些包括严重的免疫效率疾病,抗体缺陷,与相关和综合征特征的联合免疫差,尤其是突触形成的疾病以及免疫调节的疾病。
利用免疫系统治疗恶性肿瘤已成为癌症疗法的强大工具,近年来,FDA批准的免疫疗法爆炸了。作为针对肿瘤的细胞毒性活性的主要介质,CD8 T细胞是当前治疗的重点,例如免疫检查点抑制(1),CAR-T细胞疗法(2)和癌症疫苗(3)。有效的CD8 T细胞反应的产生是一个复杂的过程,涉及免疫系统的多个组成部分。树突状细胞(DCS)在有效的CD8 T细胞反应对肿瘤的策划中起着核心作用(4,5)。在最基本的水平上,T细胞介导的抗癌免疫反应集中在DC抗原表现周围。此过程始于肿瘤衍生的抗原的直流捕获,这些抗原被细胞内载于MHC分子。然后将这些肽MHC复合物(PMHC)转运到细胞表面,以启动并激活肿瘤流血淋巴结内的效应T细胞。虽然在DCS Primes CD8 T细胞上加载到MHC I类分子上的抗原,而MHC II类分子对抗原的呈现可以启用CD4 T助手(Th)细胞。“ CD4帮助”,特别是
摘要 与年龄相关的肌肉骨骼疾病(包括骨质疏松症)很常见且与长期发病有关,进而严重影响医疗保健系统的可持续性。因此,迫切需要开发可靠的疾病和药物筛选临床前模型,以便以个性化的方式验证新药,而无需进行体内检测。在骨组织中,虽然骨细胞 (Oc) 网络是一个公认的治疗靶点,但目前的体外临床前模型无法模拟其生理相关且高度复杂的结构。为此,需要多种特征,包括拟骨细胞外基质、动态灌注和机械提示(例如剪切应力)以及 Oc 的三维 (3D) 培养。我们在此首次描述了一种基于 96 个微型芯片的高通量微流控平台,用于大规模临床前评估以预测药物功效。我们通过开发和注射一种高硬度的类骨 3D 基质,对一种可实时可视化并配备多芯片的商业微流体装置进行了生物工程改造,这种基质由富含胶原蛋白的天然水凝胶与羟基磷灰石纳米晶体的混合物制成。微通道中充满了拟骨基质和 Oc,受到被动灌注和剪切应力。我们使用扫描电子显微镜对材料进行初步表征。将材料注入微通道后,使用共聚焦显微镜和荧光微珠检测体积变化和水凝胶内细胞大小物体的分布。通过测量细胞活力、评估表型标志物(连接蛋白 43、整合素 α V/CD51、硬化蛋白)、树突量化和对合成代谢药物的反应性来监测 Oc 的 3D 树突网络的形成。该平台有望加速旨在调节骨细胞生存和功能的新药开发。
简单摘要:由于TIM-3在T细胞或树突状细胞上(DC)最近出现了作为免疫疗法的促进靶标,因此我们使用公共数据库中的转录组数据和免疫组织化学评估检查了其在DC上的表达。HAVCR2(TIM-3)的表达与肿瘤微环境内的DC浸润密切相关,临床组织样品的免疫组织化学染色显示肿瘤浸润的DC表达了TIM-3。然而,它们在肿瘤侵入性前部的数量显着随着阶段进展而显着减少。在体外生成的DC中,未成熟DC的TIM-3表达高于成熟的DC,而蛋白质印迹显示,成熟DC的刺激表达高于未成熟的DC。
AK Khandalkar, Dr. Kevin Gawli, Dr. Shubhankar Tarafdar and Dr. Mukesh Rathod DOI: https://doi.org/10.33545/26174693.2024.v8.i8Sb.1719 Abstract Dendrocalamus strictus Nees, commonly known as 'Male Bamboo', is a crucial non-timber forest resource with从建筑到传统医学的多方面应用。然而,该物种面临许多挑战,包括遗传变异性约束,对害虫的敏感性和栖息地退化。植物组织培养技术提出了一种有希望的途径,可以解决这些挑战并增强严格的遗传特征。植物组织培养技术在遗传改善的植物培养技术的潜在应用。具体来说,它深入研究了微繁殖,体细胞生成和遗传转化等方法论,突出了它们在克服常规育种方法的局限性方面的相关性。这些技术提供了对所选精英基因型植物再生的精确控制,从而实现了理想性状的快速繁殖和遗传多样性的保护。关键词:D。严格,胚胎发生,雄性竹子简介,典型的树突状nee,通常称为“雄性竹子”,是以其在农业,建筑和传统医学中的多种应用而闻名的竹制家族的重要成员。作为一种著名的非林木森林资源,其重要性超越了地理边界,是全球数百万人民的生计来源。尽管具有经济和生态的重要性,但D. Strictus仍面临许多阻碍其可持续利用和保护的挑战。鉴于这些挑战,植物组织培养技术已成为严格遗传改善的有前途的策略。 通过利用细胞生物学和生物技术的原理,组织培养为在无菌条件下植物细胞,组织和器官的传播,再生和操纵提供了控制的环境。 这种方法可以快速繁殖精英基因型,克服常规育种方法的局限性并加速改善品种的发展。 微繁殖,体细胞胚胎发生和遗传转化技术的整合具有增强严重性粘土杆菌遗传特征的巨大潜力。 这些方法学使研究人员能够选择和传播具有预期特征的优质基因型,例如活力,抗病性和胁迫耐受性。 此外,分子标记和生物技术工具的结合促进了与重要农艺性状相关的基因的鉴定和隔离,为标记辅助选择和基因编辑策略铺平了道路。 材料植物材料的选择:基于诸如高生物质产量,耐药性和对当地环境条件的适应性等理想性状(例如,培养基媒体)的基础媒体:这包括对特定的营养素,增长监管者,其他添加剂的生长和其他必要的生长,选择基础媒体,选择了诸如高生物质产量,耐药性和对当地环境条件的适应性之类的精英基因型(雄性竹子)。 竹组织培养的常见基础培养基制剂包括Murashige和Skoog(MS)培养基或木质植物培养基(WPM)。鉴于这些挑战,植物组织培养技术已成为严格遗传改善的有前途的策略。通过利用细胞生物学和生物技术的原理,组织培养为在无菌条件下植物细胞,组织和器官的传播,再生和操纵提供了控制的环境。这种方法可以快速繁殖精英基因型,克服常规育种方法的局限性并加速改善品种的发展。微繁殖,体细胞胚胎发生和遗传转化技术的整合具有增强严重性粘土杆菌遗传特征的巨大潜力。这些方法学使研究人员能够选择和传播具有预期特征的优质基因型,例如活力,抗病性和胁迫耐受性。此外,分子标记和生物技术工具的结合促进了与重要农艺性状相关的基因的鉴定和隔离,为标记辅助选择和基因编辑策略铺平了道路。材料植物材料的选择:基于诸如高生物质产量,耐药性和对当地环境条件的适应性等理想性状(例如,培养基媒体)的基础媒体:这包括对特定的营养素,增长监管者,其他添加剂的生长和其他必要的生长,选择基础媒体,选择了诸如高生物质产量,耐药性和对当地环境条件的适应性之类的精英基因型(雄性竹子)。竹组织培养的常见基础培养基制剂包括Murashige和Skoog(MS)培养基或木质植物培养基(WPM)。