动机:从多个组织样品的大量DNA测序中重建肿瘤的进化史仍然是一个具有挑战性的计算问题,需要同时对肿瘤组织的反卷积及其进化史的推论。最近,系统发育重建方法通过将重建问题分为两个部分,从而取得了重大进展:固定拓扑的回归问题和对树空间的搜索。尽管已经为后一种搜索问题开发了有效的技术,但由于缺乏快速,专业的算法,回归问题仍然是方法设计和实施的瓶颈。结果:在这里,我们介绍了FastPPM,这是一种快速工具,可以通过树结构的双动态编程来解决回归问题。FastPPM支持任意可分离的凸损耗函数,包括ℓ2,分段线性,二项式和β-二元损失,并为现有算法提供了ℓ2和分段线性损失的渐近改进。我们发现,FastPPM的表现优于专业和通用回归算法,获得了50-450×加速度,同时提供了与现有方法一样准确的解决方案。将FASTPPM纳入几种系统发育推理算法中,立即产生高达400倍的速度,仅需要对现有软件的程序代码进行少量更改。最后,FASTPPM可以在模拟数据和结直肠癌的患者衍生的小鼠模型中分析低覆盖量的大量DNA测序数据,从精度和运行时都优于最先进的系统发育推断算法。可用性:FastPPM在C ++中实现,并在github.com/elkebir-group/fastppm.git上作为命令行接口和Python库可用。
深神经网络(DNNS)缺乏对概率图形模型(PGM)的精确语义和确定性的概率解释。在本文中,我们通过构造与神经网络完全相对应的无限树结构的PGM提出了创新的解决方案。我们的研究表明,在正向传播过程中,DNN确实执行了PGM推断的近似值,在这种替代PGM结构中是精确的。我们的研究不仅补充了将神经网络描述为内核机器或无限大小的高斯过程的现有研究,而且还阐明了DNNS对PGMS的精确推断进行更直接的近似。潜在的好处包括改进的教学法和DNN的解释以及可以合并PGM和DNN优势的算法。
最近,在利用人类反馈来增强图像产生方面取得了重大进展,导致迅速发展的研究领域的出现。但是,当前的工作面临着几个关键挑战:i)数据数量不足; ii)粗略的反馈学习;为了应对这些挑战,我们提出了Treereward,这是一种新型的多维,细粒度和自适应馈回学习框架,旨在改善扩散模型的语义和审美方面。具体来说,为了解决细粒反馈数据的限制,我们首先以“ AI + Exper”方式设计有效的反馈数据构建管道,产生约220万个高质量的反馈数据集,其中包含六个细粒度的尺寸。构建的,我们将构建一个树结构奖励模型,以有效利用细粒度的反馈数据,并在反馈学习过程中提供量身定制的优化。对稳定扩散V1.5(SD1.5)和稳定扩散XL(SDXL)的广泛实验证明了我们方法在增强一般且细粒度