鉴于2023年国内市场利率持续偏低,穗信云链把握机遇,加强与各大金融机构的紧密合作,以更高效率、更低利率为中小企业提供信贷支持。集团不仅全面支持新一代票据及供应链票据受理,还加强银行承兑汇票受理,与近10家银行合作。随着穗信云链服务受理能力的进一步提升,2023年交易规模突破百亿元,较去年同比增长131%。其中票据业务同比增长185%,带动金融科技服务板块经营利润达4,300万港元,同比增长190%。
Sample SE T /dB SE R /dB SE A /dB SE A /SE R /% SSE t /(dB·(cm −2 ·g) −1 ) M3-MX-0 5.0 0.9 4.0 4.3 87.6 M3-MX-5 6.8 1.5 5.3 3.5 147.5 M3-MX-10 7.2 1.7 5.5 3.2 171.0 M3-MX-15 7.0 1.7 5.3 3.0一直m3-ag@mx-15 69.0 10.3 58.7 5.7 2 356.6 m3-ag@mx-20 68.2 10.3 57.8 5.6 2 719.8 m3-ag@mx-25 67.9 10.0 57.0 57.9 5.8 2 439.4 2 439.4
由于有效采样困难,不同来源的树高观测值的定量比较很少。本研究调查了通过常规现场清查、机载激光扫描 (ALS) 和地面激光扫描 (TLS) 获得的树高观测值的可靠性和稳健性。进行了一项精心设计的无损实验,其中包括斯堪的纳维亚北方森林 18 个样地 (32 m × 32 m) 中的 1174 棵树。ALS 数据的点密度约为 450 点/平方米。TLS 数据是通过从样地中心和四个象限方向进行多次扫描获得的。ALS 和 TLS 数据都代表了最前沿的点云产品。借助现有的树木图,从 ALS 和 TLS 点云中手动测量树高。因此,评估结果揭示了应用激光扫描 (LS) 数据的容量,同时排除了单株树检测等数据处理方法的影响。通过对 ALS、TLS 和基于现场的树高进行交叉比较,评估了不同树高源的可靠性和稳健性。与 ALS 和 TLS 相比,现场测量对林分复杂性、树冠等级和树种更敏感。总体而言,现场测量倾向于高估高大树木的高度,尤其是共显性树冠等级的高大树木。在密集的林分中,中等和抑制树冠等级的小树的现场测量高度也存在很大的不确定性。基于 ALS 的树高估计在所有林分条件下都是稳健的。树越高,基于 ALS 的树高越可靠。由于难以识别树梢,基于 ALS 的树高的最大不确定性来自中等冠级的树木。使用 TLS 时,可以预期低于 15-20 米高的树木的可靠树高,具体取决于林分的复杂性。LS 系统的优势在于数据几何精度的稳健性。LS 技术在测量单个树木高度方面面临的最大挑战在于遮挡效应,这导致 ALS 数据中遗漏了中等和抑制冠级的树木,TLS 数据中高大树木的树冠不完整。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
lah 10(T C = 250 K),Drozdov和Al。(2019)LAH 10(T C = 260 K),Somayazalu和Al。(2019)YH 9(T C = 243 K),Kong和Al。(2019)YH 6(T C = 224 K),Troyan和Al。(2019)CAH 6(T C = 215 K),但等。(2021)CAH 6(T C = 210 K),Li和Al。(2022)SH 3(T C = 203 K),Drozdov和Al。(2015)THH 10(T C = 161 K),Semenoch和Al。(2019)CEH 10(T C = 115 K),Chen和Al。(2021)CEH 9(T C = 100K),Chen和Al。(2021)YH 4(T C = 88 K),Shao和Al。(2021)BAH 12(T C = 20 K),Chhen和Al。(2021)SNH X(T C = 70K),Hong和Al。(2022)
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
摘要 — 新兴的实例优化系统类别已显示出通过专门针对特定数据和查询工作负载实现高性能的潜力。特别是,机器学习 (ML) 技术已成功应用于构建各种实例优化组件(例如,学习索引)。本文研究了利用 ML 技术来增强空间索引(特别是 R 树)的性能,以适应给定的数据和查询工作负载。由于 R 树索引节点覆盖的区域在空间中重叠,因此在搜索空间中的特定点时,可能会探索从根到叶的多条路径。在最坏的情况下,可以搜索整个 R 树。在本文中,我们定义并使用重叠率来量化范围查询所需的无关叶节点访问程度。目标是提高传统 R 树对高重叠范围查询的查询性能,因为它们往往会产生较长的运行时间。我们引入了一种新的 AI 树,将 R 树的搜索操作转换为多标签分类任务,以排除无关的叶节点访问。然后,我们将传统的 R 树扩展到 AI 树,形成混合的“AI+R”树。“AI+R”树可以使用学习模型自动区分高重叠查询和低重叠查询。因此,“AI+R”树使用 AI 树处理高重叠查询,使用 R 树处理低重叠查询。在真实数据集上的实验表明,“AI+R”树可以将查询性能提高到传统 R 树的 500% 以上。