预计商业航天业很快将爆发式增长,成为一个价值万亿美元的产业,但新太空领域的专利保护却在很大程度上被这个由技术创新和快速发展驱动的行业所忽视。由于大型商业航天公司依赖几乎不可能独立发明或逆向工程的商业秘密,因此发明很少得到披露。发明披露和保密的好处是众所周知的,但尚未有针对航天工业发明的分析。本文通过分析航空航天工业中常见的知识产权实践并运用知识产权理论,填补了文献中的空白。我还回顾了政府过去在航空航天工业知识产权方面的行动。我发现商业航天行业的参与者几乎没有动力披露他们的发明。这种缺乏激励可能会损害或减缓商业航天业的扩张。本文可能对希望通过知识产权政策继续扩张和创新商业航天业的政策制定者有所帮助。
循环神经网络用于预测金融,气候,语言和许多其他领域的时间序列。储层计算机是一种特别容易训练的复发性神经网络形式。最近,引入了一台“下一代”储层计算机,其中内存跟踪仅涉及有限数量的先前符号。我们探讨了这个有趣的建议中有限记忆痕迹的固有局限性。fano的不平等现象的下限表明,在大型概率状态机器产生的高度非马克维亚过程中,具有相当长的内存轨迹的下一代储层计算机具有相当长的错误概率,其误差概率至少比最小可行的误差概率高约60%,以预测下一步观察。更普遍地,看来流行的复发性神经网络远远远远远远没有预测这种复杂的过程。这些结果突出了新一代优化的复发神经网络体系结构的需求。除了这一发现之外,我们为随机生成但复杂的过程提供了量度集合的结果。一个结论是,大型的概率状态机器(特别是大型机器)是为地面流动的复发性神经网络体系结构产生具有挑战性和结构上悬而未决的刺激的关键。
摘要机器学习到财务领域的应用已成为主题讨论的主题。,预计深度学习将显着推进对冲和校准的技术。由于这两种技术在金融工程和数学金融中起着核心作用,因此对他们的应用吸引了从业人员和研究人员的关注。深度套期保值,将深度学习应用于对冲,预计将有可能分析交易成本等因素如何影响对冲策略。由于由于计算成本而难以对这些因素的影响进行数量评估,因此深度对冲不仅为衍生品的精炼和自动化对冲操作提供了可能性,而且为风险管理中的更广泛应用提供了可能性。深度校准将深入学习用于校准,有望进行参数优化计算,这是衍生品定价和风险管理中必不可少的过程,更快,更稳定。本文概述了现有文献,并从实际和学术角度提出了未来的研究方向。具体来说,本文展示了深度学习对现有理论框架和财务上的实际动机的影响,并确定了深度学习可以带来的潜在发展以及实践挑战。关键字:金融工程;数学金融;衍生物;对冲校准;数值优化
1地球与环境学院,利兹大学,利兹大学LS2 9JT,英国2能源2,气候与环境计划,国际应用系统分析研究所(IIASA),2361年,奥地利Laxenburg,奥地利3 UIT北极大学挪威大学,Tromsø,Tromsø,Tromsø,Tromsø,Norway 4 Wornay,地球和大气层,梅尔布尔,梅尔布尔,梅尔布尔,梅尔布尔,澳大利亚维多利亚州墨尔本6大气,海洋和行星物理学,牛津大学,牛津大学,牛津大学3PU,英国7会议,大都会埃克斯特·哈德利中心,埃克塞特Ex1 3pb,英国8气候系统研究,芬兰气象系统,芬兰气象研究所,赫尔斯基,赫尔斯基,
可再生氢在盐洞中的储存需要快速注入和生产速率,以应对能源生产和消费之间的不平衡。这种操作条件引起了人们对盐洞穴的机械稳定性的担忧。为盐学选择适当的构成模型是研究此问题的重要一步,文献中已经介绍了许多具有多个参数的本构模型。但是,基于应力应变数据,可靠地确定哪个模型和哪个参数代表给定岩石的强大校准策略仍然是一个未解决的挑战。在社区中,我们首次提出了一个多步策略,以根据许多用于盐岩的变形数据集确定单个参数集。为此,我们首先开发了一个综合的构造模型,能够捕获瞬态,反向和稳态蠕变的所有相关非线性变形物理。然后,通过将校准过程作为优化问题来实现单个代表性材料参数的确定,并为其使用该问题。动态数据集成是通过多步校准策略来实现的,对于一次可用的一个实验。此外,我们的校准策略可以灵活地考虑岩石样品之间的轻度异质性,从而产生一组代表变形数据集的参数。我们的绩效分析结果表明,提出的校准策略是可靠的。作为对所提出方法的严格数学分析,缺乏相关的实验数据集,我们考虑了广泛的合成实验数据,灵感来自文献中现有的稀疏相关数据。此外,随着包含更多数据进行校准,模型的精度变得越来越好。
1。treaster,A。L.和Yocum,A。M.,1978。五孔探针的校准和应用。技术。REP。 2。 Yasa,T。和Paniagua,G.,2012。 \多孔探测数据处理的鲁棒过程。 流量测量和仪器,26,pp。 46-54。REP。 2。Yasa,T。和Paniagua,G.,2012。\多孔探测数据处理的鲁棒过程。流量测量和仪器,26,pp。46-54。
摘要 — 脑机接口 (BMI) 已成为辅助技术的变革力量,通过实现设备控制和促进功能恢复,为运动障碍患者提供了帮助。然而,持续存在的会话间差异性挑战带来了重大障碍,每次使用时都需要耗时的校准。除此之外,当前设备的低舒适度进一步限制了它们的使用。为了应对这些挑战,我们提出了一种综合解决方案,将基于 CNN 的微型迁移学习 (TL) 方法与舒适的可穿戴 EEG 头带相结合。这种新型可穿戴 EEG 设备在头带上放置了柔软的干电极,并能够进行机载处理。我们获取了多个会话的运动 EEG 数据,并使用 TL 实现了高达 96% 的会话间准确度,大大缩短了校准时间并提高了可用性。通过每 100 毫秒在边缘执行一次推理,该系统估计可实现 30 小时的电池寿命。舒适的 BMI 设置配有微型 CNN 和 TL,为未来的设备持续学习铺平了道路,这对于解决会话间差异和提高可用性至关重要。索引术语 — 脑机接口、EEG、可穿戴医疗保健、可穿戴 EEG、深度学习、迁移学习
自然光未校准光度立体 (NaUPS) 减轻了经典未校准光度立体 (UPS) 方法中严格的环境和光线假设。然而,由于内在的不适定性和高维模糊性,解决 NaUPS 仍然是一个悬而未决的问题。现有的工作对环境光和物体的材质施加了很强的假设,限制了它在更一般场景中的有效性。或者,一些方法利用监督学习和复杂的模型,但缺乏可解释性,导致估计有偏差。在这项工作中,我们提出了自旋光未校准光度立体 (Spin-UP),一种无监督方法来解决各种环境光和物体中的 NaUPS。所提出的方法使用一种新颖的设置,可以在旋转平台上捕捉物体的图像,通过减少未知数来减轻 NaUPS 的不适定性,并提供可靠的先验来缓解 NaUPS 的模糊性。利用神经逆向渲染和提出的训练策略,Spin-UP 可以在复杂的自然光下恢复表面法线、环境光和各向同性反射率。实验表明,Spin-UP 的表现优于其他监督/无监督 NaUPS 方法,并在合成和真实数据集上实现了最先进的性能。代码和数据可在 https://github.com/LMozart/CVPR2024-SpinUP 上找到。
自主驾驶系统依靠精确的轨迹前词进行安全有效的运动计划。尽管努力提高预测准确性,但由于数据噪声和不完整的观察,固有的不确定性仍然存在。许多策略需要将预测结果形式化为分布,并利用差异代表不明显。然而,我们的实验研究表明,现有的轨迹预测模型产生了不可靠的不可估计的估计,需要进行其他定制的核心过程。另一方面,直接将电流校准技术应用于预测输出可能会产生亚最佳结果,因为对所有预分解使用了通用缩放器并忽略了信息性的数据提示。在本文中,我们提出了使用调节器(CCTR)的定制校准温度,这是一个通用框架,可以校准外部分布。具体来说,CCTR 1)采用基于校准的正规器将输出差异与预测与地面真相之间的差异相一致,并且2)使用上下文和历史信息为每个预测提供了每个预测的量身定制的温度缩放器。涉及多种谓词和计划方法的广泛评估表明,CCTR比现有的校准算法和不确定性意识方法的优越性,校准质量的11% - 22%的显着提高,运动计划的17%-46%。
A G. Edenhofer等。“重新启动数值信息字段理论(Nifty.RE):高斯过程和变异推理的库”。in:(2024)。arxiv:2402.16683 [Astro-Ph.im]。