1.目的。近年来建造或翻新的许多 PMEL 未达到最低操作环境标准。这些设施无法通过空军计量和校准计划的认证,导致基地失去校准能力。本手册提供了空军土木工程师设计和建造精密测量设备实验室的标准。将其用作新计量实验室的选址和设计指南,或用于改造现有设施。仅解决那些直接影响测量的准确性和完整性并且是校准实验室独有的要求。如果设施的状况不会对执行测量可追溯性的环境要求产生不利影响,则本手册中的标准不得作为改进现有设施的唯一理由。用户应在设计阶段早期联系 AFMETCAL DET 1/ML、813 Irving-Wick Drive West Suite 4M、Heath OH 43056-6116 和 HQ AFCESA、Tyndall AFB,以确保其设施满足或超越基本设计标准。
摘要:加拿大海洋网络公司发起了一个项目,旨在评估用于有线海洋观测站的低频智能水听器的性能。找不到合适的独立校准设施,无法校准 a) 数字水听器或 b) 低至 0.01 Hz。数字水听器系统缺乏端到端校准能力是潜在的错误来源,而数字水听器校准缺乏标准则需要使用多种指标,例如 dB re µPa 2 @FS 或 dB re counts 2 /µPa 2 。由于缺乏现有的端到端校准系统,因此需要为海洋观测站设计一个低频数字水听器校准系统。本文介绍了新校准系统的设计、操作挑战和性能。该系统由活塞驱动,活塞以正弦方式对少量有限体积的水加压,参考压力传感器和被测单元浸入其中。校准组件浸入水浴中以进行热阻尼,并将水浴封闭以进行隔振。
四十多年前,频域电磁 (FDEM) 方法促成了首次航空电磁 (AEM) 发现。尽管早期面临来自时域技术的竞争,但 FDEM 尤其是直升机电磁 (HEM) 多年来蓬勃发展并多样化,成为采矿勘探的主要工具之一。随着传感器和解释技术的成熟,应用变得越来越定量,特别是在工程和环境任务中。为这些应用开发的 FDEM 方法的改进现在正应用于矿产勘探。校准精度和稳定性已成为这些定量调查数据解释质量的重要因素。随着技术的不断改进,诸如检测细微特征等困难的勘探问题(由于系统精度和分辨率不足而目前无法访问)正变得可处理。勘探人员和仪器/解释专家的共同努力对于这些新应用的开发至关重要。未来十年的技术改进可能包括系统硬件和软件的进一步集成、引入具有更宽光谱范围和密度的系统、增强校准能力、减少系统噪声和漂移以及更好地跟踪传感器方向。
摘要 本文描述了在现场测量量子霍尔电阻标准时对两种不同的数字阻抗电桥进行比较,目的是实现电容的 SI 单位法拉。在 EMPIR 联合研究项目 18SIB07 GIQS(石墨烯阻抗量子标准)中,德国联邦物理技术研究院 (PTB) 开发了一种约瑟夫森阻抗电桥,意大利国家计量研究所 (INRIM) 和都灵理工大学 (POLITO) 开发了一种电子数字阻抗电桥。前者基于约瑟夫森波形发生器,后者基于电子波形合成器。INRIM-POLITO 阻抗电桥被转移到 PTB,通过测量温控标准和石墨烯交流量化霍尔电阻 (QHR) 标准对这两个电桥进行了比较。 1233 Hz 下 10 nF 电容标准的校准不确定度在 PTB 电桥的 1 × 10 − 8 以内,INRIM–POLITO 电桥的不确定度在 1 × 10 − 7 左右。比较在综合不确定度内相互验证了两个电桥。结果证实,数字阻抗电桥允许从 QHR 实现 SI 法拉,其不确定度可与 BIPM 和主要国家计量机构的最佳校准能力相媲美。
摘要 背景 风险预测模型有助于识别 2 型糖尿病高风险个体。然而,在中国东部地区,尚未将此类模型应用于临床实践。目的 本研究旨在基于体检数据开发一种简易模型,识别中国东部地区 2 型糖尿病高危人群,以进行预测、预防和个性化医疗。方法 对 15,166 名每年进行体检的非糖尿病患者(12-94 岁;37% 为女性)进行了 14 年的回顾性队列研究。构建多元逻辑回归和最小绝对收缩和选择算子 (LASSO) 模型,用于单变量分析、因子选择和预测模型构建。校准曲线和受试者工作特征 (ROC) 曲线用于评估列线图的校准和预测精度,并使用决策曲线分析 (DCA) 评估其临床效度。结果 本研究中 2 型糖尿病的 14 年发病率为 4.1%。本研究开发了预测2型糖尿病风险的列线图,校准曲线显示该列线图具有良好的校准能力,内部验证中ROC曲线下面积(AUC)显示统计准确性(AUC = 0.865)。最后,DCA支持该列线图的临床预测价值。结论该列线图可作为一种简单、经济、可广泛推广的工具来预测中国东部地区2型糖尿病的个体化风险。早期成功识别和干预高危个体有助于从预测、预防和个性化医疗的角度提供更有效的治疗策略。
摘要该论文报告了对射射HALL探针(RHP)磁性诊断系统的系统评估,该诊断系统基于INSB半导体薄膜,并描述了导致创新磁探针概念的建议的路径。在最近的氘 - 帝国实验运动中,RHP操作的相关说明还提供了,显示了在类似Iter的强烈中子通量下正确的操作。对RHP系统进行系统评估的期间范围从2009年10月到2021年3月,在此期间,该机器产生了超过19,000个脉冲。RHP系统由六个三维大厅探针组成,这些探针具有内置的重新校准能力,这要归功于在量身定制的自动预脉冲预校准序列中产生局部已知场的微糖苷,也可以手动启动。在脉冲过程中,当记录其信号时,微苯酚也可以用作电感传感器。此外,该系统在探针位置提供了温度测量值,这些温度也被连续记录。评估证明了RHP系统的准确长期操作。所有诊断通道可靠地提供脉冲预校准数据和脉冲信号,并且保留了霍尔传感器的原始灵敏度。混合探针有望提供感应和霍尔传感技术的优势,本质上是单个ITER磁性离散探针的相同包装大小。,它将解决积分器漂移的问题,以解决持久的燃烧等离子体排放。集成考虑和数据融合分析导致提出高性能,紧凑,宽带,混合场探针,由电感线圈和HALL传感器组合组成,由为迭代或替代性概念开发的线圈技术制造,并具有改善的辐射热度。通过Luenberger-Kalman观察者处理的线圈和霍尔传感器产生的信号提供了一个磁场测量值,该测量值是不钻孔和低噪声的。由于这些原因,已提出混合探针作为未来燃烧的血浆实验和示范融合发电厂的潜在主要磁性诊断传感器。
背景:癌症确实代表着重大的公共卫生挑战,而外周插入中心静脉导管 (PICC-UE) 的计划外拔管是患者安全的关键问题。识别独立风险因素并实施高质量的评估工具以在高风险人群中早期发现,对于降低癌症患者 PICC-UE 的发病率至关重要。精准的预防和治疗策略对于改善临床环境中的患者结果和安全性至关重要。目的:本研究旨在识别与癌症患者 PICC-UE 相关的独立风险因素,并构建针对该群体的预测模型,为预测和预防这些患者的 PICC-UE 提供理论框架。方法:收集了 2022 年 1 月至 12 月的前瞻性数据,涵盖了中南大学湘雅医院的 PICC 癌症患者。每位患者都接受持续监测,直到导管拔除。患者分为两组:UE 组 (n=3107) 和非 UE 组 (n=284)。通过单变量分析、最小绝对收缩和选择算子 (LASSO) 算法和多变量分析确定独立危险因素。随后,将 3391 名患者按 7:3 的比例分为训练集和测试集。利用确定的预测因子,使用逻辑回归、支持向量机和随机森林算法构建了 3 个预测模型。根据受试者工作特征 (ROC) 曲线和 TOPSIS (按与理想解的相似性排序偏好技术) 综合分析选择最终模型。为了进一步验证该模型,我们收集了 2022 年 6 月至 12 月青海大学附属医院和海南省人民医院 600 名癌症患者的前瞻性数据。我们使用 ROC 曲线下面积评估模型的性能以评估区分度,使用校准曲线评估校准能力,并使用决策曲线分析 (DCA) 来衡量模型的临床适用性。结果: 确定了癌症患者 PICC-UE 的独立危险因素,包括身体活动能力受损(OR 2.775,95% CI 1.951-3.946)、糖尿病(OR 1.754,95% CI 1.134-2.712)、手术史(OR 1.734,95% CI 1.313-2.290)、D-二聚体浓度升高(OR 2.376,95% CI 1.778-3.176)、靶向治疗(OR 1.441,95% CI 1.104-1.881)、手术治疗(OR 1.543,95% CI 1.152-2.066)和超过 1 次导管穿刺(OR 1.715,95% CI 1.121-2.624)。保护因素包括正常BMI(OR 0.449,95%CI 0.342~0.590)、聚氨酯导管材质(OR 0.305,95%CI 0.228~0.408)、带瓣导管(OR 0.639,95%CI 0.480~0.851)。TOPSIS综合分析结果显示,在训练集中,复合