空间进行可能导致大气危害事故的工作活动。可以使用电子鼻 (e-nose) 与移动机器人的集成来监测大气空气样本。在这项工作中,我们报告了电子鼻的校准,它由三个独立的金属氧化物半导体 (MOS) 气体传感器以及用于环境监测的氧气、温度和湿度传感器组成。样品气体使用两个不同的气瓶。气瓶 1 包含硫化氢 (H 2 S)、一氧化碳 (CO) 和甲烷 (CH 4 ),而气瓶 2 包含零级空气。来自 MOS 气体传感器响应的模拟数字转换器 (ADC) 读数被转换为百万分率 (ppm) 和百分比 (%) 读数。使用商用气体检测器验证气瓶中的气体浓度。计算电子鼻中 MOS 气体传感器与商用气体检测器对气瓶 1 的读数差作为校准值。暴露的气瓶 2 用于识别 MOS 气体传感器返回基线水平的能力。结果证明了所开发的电子鼻可用于环境气体检测和监测的能力。
注意事项•使用该仪表不当会造成损害,冲击,伤害或死亡。在操作仪表之前,请阅读并了解本用户手册。•在更换电池之前,请务必卸下外部温度探针。•在操作仪表之前检查外部探针和仪表本身是否有任何损坏。使用前修理或更换任何损坏配件。•如果要长时间存储仪表,请卸下电池。•请勿使测试仪暴露于极端温度或高湿度。•使用指南针函数测量方向时,请避免放置手机和其他可以极大地影响靠近测试仪的磁场的电子设备。这可能会导致测量值过多的错误。•如果测量环境中的磁场太大,则可能需要重新校准,请参阅第11节中的自我重新校准过程。•如果长时间没有使用测试仪,或者如果存在重大的环境变化,请重新校准仪器。请参阅第11节中的自我重新校准过程。•如果以制造商未指定的方式使用设备,则设备提供的保护可能会受到损害。
摘要 —本文介绍了一种用于解决晶圆上测试系统中探针-探针泄漏引起的误差项的先进校准方法。介绍了一种新的 12 项误差模型,用于晶圆上测试系统,包括矢量网络分析仪 (VNA)、频率扩展器(如果有)、电缆/波导、探针、探针接触垫和探针-探针泄漏。开发了一种两步校准过程和一种算法,该算法具有四个片上校准标准,包括一个未定义的直通、两对未定义的对称反射(例如开路-开路和短路-短路对)和一对已知匹配负载。此外,还提出了一种改进的匹配负载电路模型以提高精度。已经在 0.2 GHz 至 110 GHz 频率范围的失配衰减器上测试了该校准方法,并将结果与数值模拟和现有校准方法进行了比较。结果表明,衰减器的 |S 11 | 更连续,|S 21 |提高了1.7 dB。显然,所提出的校准方法具有更简单的校准过程和对校准标准的要求不那么严格,而校准标准是毫米波和太赫兹频率下晶圆系统校准的关键。更重要的是,新的校准方法更适合DUT具有可变长度的测量。
内存错误 CRC 测试失败。重要提示:首次使用未配置的 ZSSC3018 时,此虚拟 LED 应为黄色。要清除初始错误指示器,请将数据写入内存(例如,桥接配置、系数)并通过左侧面板中的“写入 MTP + CRC”按钮生成内存内容的签名(请参阅第 2.3 和 2.5 节)。此初始内存写入操作的设置可以是随机的,因为这些寄存器将作为配置和校准过程的一部分被覆盖。
成像系统的分辨率自摄影测量出现以来就一直是摄影测量中一个令人着迷的课题。在过去的 20 年中,科学分析逐渐认识到模拟过程由镜头、胶片、前向运动和大气等子系统组成。通过考虑电磁波谱的波动理论并将不同组件建模为线性时不变 (LTI) 系统 (BAHR 1985),数学处理是可行的。另一方面,航空摄影的几何分辨率在摄影测量的实际和商业应用中始终发挥着核心作用。例如,为定义校准过程的通用规则而做出的努力就证明了这一点。
在当前的微电子软件包的当前测试过程中记录了停机时间。可用的测试设备,电源模块的隔离以及测试过程必须更改,以最大程度地减少停机时间。本研究介绍了由数字转换器(ADC)制成的电压监测设备的设计和开发,该电压通过了通过集成电路(I2C)连接到电源模块6(PS6)。它构建是为了在PS6的隔离和测试过程中解决停机时间。此设置能够通过薄膜晶体管(TFT)监视器在4-12 V信号中监视和显示三个输出电压。进行了标称电压和称为三点测试的当前设置的测试。结果,PS6的故障检测和校准过程能够最大程度地减少下降时间。开发的电压监视设备的可接受百分比为0.04572%,这也可以替代用于PS6的特定应用程序的数字多项式(DMM)。