结果:对于BP ND,ZTE-MRAC在纹状体区域显示出最高的准确性(偏差<2%)。Atlas-MRAC在尾状核(-12%)中表现出明显的偏见,而MaxProb-MRAC揭示了壳虫的实质性偏置(9%)。r 1估计值对所有MRAC方法都有边缘偏差(-1.0 - 3.2%)。maxprob-MRAC显示R 1和BP ND的最大主体间变异性。纹状体区域的标准化吸收值(SUV)显示出ZTE-MRAC的平均偏差最强(〜10%),尽管随着时间的推移和最小的主体间可变性持续不变。ATLAS-MRAC随着时间的推移(+10至-10%)的偏置变化最大,其次是MaxProb-MRAC(+5至-5%),但MaxProb显示出最低的平均偏差。 对于小脑,MaxProb-MRAC显示出最高的变异性,而Atlas和ZTE-MRAC随着时间的流逝,偏差是恒定的。ATLAS-MRAC随着时间的推移(+10至-10%)的偏置变化最大,其次是MaxProb-MRAC(+5至-5%),但MaxProb显示出最低的平均偏差。对于小脑,MaxProb-MRAC显示出最高的变异性,而Atlas和ZTE-MRAC随着时间的流逝,偏差是恒定的。
日期§11-100.1-17记录和报告。(a)(4)被许可人或初级保健给予者应维护每个居民的个人记录。应由被许可人或初级保健给予者提供居民的入院,再入院或转让,以进行该部门的审查:近十二个月内最近进行的医学检查和当前诊断的报告,以及肺结核检查的报告。结核病检查应遵循当前的部门政策;发现居民#2 - 没有初始(2步)结核病(TB)测试的记录。与您的POC提交文件。
新德里,印度摘要 - 量子误差校正(QEC)是保护量子信息免受反矫正和错误的重要技术。这涉及算法和技术的设计和实施,以最大程度地降低错误率并提高量子电路的稳定性。QEC中的关键参数之一是错误纠正代码的距离,该代码确定了可以纠正的错误数量。另一个重要参数是误差概率,它量化了量子系统中发生错误的可能性。在这种情况下,仿真扫描的目标像代码中执行的模拟是为了研究QEC代码的性能,以确定距离和错误概率的不同值,并优化代码以最大程度的准确性。通过改变这些参数并观察代码的性能,研究人员可以深入了解如何设计更好的代码并提高量子计算系统的可靠性。我们还讨论了量子计算需要解决的挑战,以实现其在解决实际错误纠正问题方面的潜力。
乳腺癌是全球最常见的妇女癌症,其发病率正在逐渐增加[1,2]。乳腺癌筛查是通过乳腺X线摄影进行的,这是唯一在随机对照试验中降低乳腺癌死亡率的唯一形态[3,4]。乳房X线照片说明了组织X射线吸收的差异作为密度变化;但是,乳腺组织和癌组织之间X射线吸收的差异相似。因此,两组在乳房X线照片上均显示出相似的亮度。因此,病变检测的敏感性取决于乳腺组织的量[5,6]。乳房组成决定了日本中央组织在乳腺癌质量筛查质量保证的2020年2月制定的指南中所指出的乳腺癌筛查期间病变检测的敏感性。该分类在全球标准指南,美国放射学院(ACR)开发的全球标准指南,乳房成像报告和数据系统(BI-RADS)[7]中。使用乳腺含量比评估乳房成分,该乳腺含量比表示乳腺组织最初具有最初具有
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativ ecommon s.or g/licenses/by/4.0/。Creative Commons公共领域奉献豁免(http:// creativecommo ns。org/publicdo main/Zero/Zero/1.0/)适用于本文提供的数据,除非在信用额度中另有说明。
索赔信息车辆编程和编码在此研讨会访问期间,受影响的车辆还可以显示一个或多个编程和编码技术广告系列维修,编程和编码程序只能一次发票。选择其中一项开放的技术活动之一,以执行并提交将车辆更新为所需的I-Level或更高版本(包括劳动操作代码00 00 006/556、61 21 21 528和61 00 730)。请确保在下班前和/或下班后(包括附加标签)按照公开活动的要求执行任何其他。按照相应的服务信息公告中概述的任何其他开放编程和编码广告系列维修。仅在上述不适当的情况下,BMW软件解决方案才是:按照BMW New Waver Limited保修的乘用车和轻型卡车的保修,或如下所述的BMW认证的预认证的预认证计划。
I。与合成和测序技术的发展一起,更多的研究组表明了体外DNA储存的潜力。参见例如[1],[2],[4],[5],[7],[13],[22],[23]。典型的DNA存储系统由三个组成部分组成:(1)包含编码数据的链的合成。在当前技术人员中,每个链都有数百万份,这些链的长度通常限制为250-300个核苷酸。 (2)存储合成DNA链的存储容器; (3)读取链的DNA测序仪,其中读取了测序计算机的输出序列。这种新颖的技术具有几种与数字同行根本不同的属性,而最突出的技术是错误的副本以无序的方式存储在存储容器中(请参见例如[12])。克服这一挑战的最常见解决方案是使用作为链的一部分存储的索引。相对于所有其他链,将每条链带有一些指示链的位置的核苷酸。这些索引通常使用错误校正代码(ECC)[2],[4],[11],[13],[22]保护这些指数。输入信息的检索通常由以下三个步骤完成。第一步是将所有读取分为簇中,以使每个群集的读取都是相同信息链的所有嘈杂副本。我们的观点第二步在每个群集上应用了重建算法,以检索原始输入链的近似值。在最后一步中,用于纠正其余错误并检索用户的信息。虽然以前的作品独立解决了每个步骤(例如,请参见[1],[2],[4],[13],[20],[22]),这项工作旨在将它们全部解决。这是通过限制DNA存储系统中的存储消息来完成的,因此对于任何两个输入消息,所有可能的输出的集合将是相互脱节的。我们称此代码为DNA校正代码。
图1-1:基于分布的偏置校正方法的示例。8图2-1:使用乘法性分位数映射的偏见和原始访问-CM2校正和原始访问CM2的CCS数据。14图2-2:比较了9个指数的几种方法学变异的性能的热图。16图3-1:VCSN的Tasmin的年度气候,偏置校正CCAM输出,Loyo CV和RAW CCAM输出以及VCSN的偏置。17图3-2:VCSN累积降水的年度气候,偏见校正了访问-CM2 - CCAM输出,Loyo CV和Raw Access-CM2-CCAM输出以及VCSN的偏见。18图3-3:tasmax的VCSN的冬季气候,偏见校正了ec-earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。19图3-4:偏置校正的GFDL-ESM4 - CCAM输出的NZ 12个位置的长期月度平均累积降水量。20图3-5:VCSN的TXX年度气候,偏置校正Ec-Earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。21图3-6:VCSN一天的最高强度降雨的年度气候,偏见校正了EC-EARTH3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。22图3-7:Perkins技能分数比较了湿法长度与VCSN的直方图与VCSN的偏置校正Ec-Earth3-CCAM输出,相应的交叉验证的校正后的输出和原始输出。23图3-8:夏季和冬季的历史和SSP3-7.0实验之间的气候变化信号在这些季节内积累的降水量。3924图3-9:历史和SSP3-7.0实验和CCS的霜冻天数量。25图3-10:偏置校正的访问-CM2输出与历史和SSP3-7.0实验中每日累积降水的相应原始模型输出之间的时间相关性。26图A-1:线性间隔节点,对数间隔节点和Sigmoid间隔节点的分位间距。33图A-2:从分布中绘制的虚拟数据,参考和模拟数据具有相同的平均值和高方差。35图A-3:虚拟数据,参考和模拟数据从平均值和较高方差的分布中绘制。36图A-4:与分组器的乘法降水虚拟数据的每月平均值。37图A-5:在SSP370场景下,访问CM2-CCAM的夏季和冬季气候变化信号。38图A-6:在SSP370方案下,Mahanga站上的气候变化信号,强调了EQM对趋势的通胀影响,而没有明确的趋势保存。
约瑟夫森效应彻底改变了电压计量学 [ 1 – 5 ],它与用于测量电阻的量子霍尔效应以及用于测量时间和频率的原子钟一起,使得基于量子效应的测量标准成为可能。量子标准 7 产生的值本质上是准确的,因此可以使用可比较的设备、系统和测量技术在任何位置进行可重复的精密测量 8。量子标准本质上不同于非量子的“人工”标准 10,后者的值取决于环境条件。量子标准 11 的成功促使国际社会重新定义国际单位制,并 12 重新定义如何通过基本常数分配测量不确定度。[ 6 – 8 ] 在本章中,我将讨论直流和交流量子电压 14 标准的特性和特点、电压标准系统的设备、电路和仪器 15 的最新技术,以及它们目前如何应用于电压和 16 温度计量学。自始至终,我将指出如何采用适当的测量技术来最大限度地减少系统误差并实现接近量子精度的测量。